This is the first classification of sentiment analysis for police new task

How to import

import torch
from transformers import BertForSequenceClassification, BertTokenizer, BertConfig, pipeline

# Load the tokenizer and model
tokenizer = BertTokenizer.from_pretrained("nfhakim/police-sentiment-c1-v2")
config = BertConfig.from_pretrained("nfhakim/police-sentiment-c1-v2")
model = BertForSequenceClassification.from_pretrained("nfhakim/police-sentiment-c1-v2", config=config)

How to use

# Initialize the pipeline
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)

# Define a function to handle input text
def classify_text(text):
    # Tokenize the text and truncate to the first 512 tokens if necessary
    inputs = tokenizer(text, truncation=True, max_length=512, return_tensors="pt")

    # Use the model to classify the text
    results = nlp(inputs['input_ids'])
    return results

# Example usage
input_text = "Your input text here"
output = classify_text(input_text)
print(output)
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.