Quickstart

Here is a code snippet for quick use.

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "newsbang/Homer-7B-v0.1"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [
    {"role": "system", "content": "Your name is Homer. You are a very helpful assistant."},
    {"role": "user", "content": "Hello"}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
Downloads last month
7
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for newsbang/Homer-7B-v0.1

Merges
1 model
Quantizations
2 models