Visualize in Weights & Biases

uaspeech-large-finetune-shorter-evals-29-11-8AM

This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2763

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss
0.3168 0.0828 200 0.3934
0.2478 0.1242 300 0.3321
0.2151 0.1656 400 0.3295
0.1683 0.2070 500 0.3064
0.1469 0.2483 600 0.3344
0.1183 0.2897 700 0.2818
0.0982 0.3311 800 0.2951
0.1028 0.3725 900 0.2737
0.0901 0.4139 1000 0.2723
0.0724 0.4553 1100 0.2761
0.0668 0.4967 1200 0.2807
0.0641 0.5381 1300 0.2699
0.041 0.5795 1400 0.2727
0.0438 0.6209 1500 0.2763

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
4
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for neuronbit/uaspeech-large-finetune-shorter-evals-29-11-8AM

Finetuned
(388)
this model