Visualize in Weights & Biases

uaspeech-large-finetune-shorter-evals

This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2762

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss
0.316 0.0828 200 0.3907
0.2478 0.1242 300 0.3199
0.2129 0.1656 400 0.3282
0.1667 0.2070 500 0.3194
0.1534 0.2483 600 0.3327
0.1208 0.2897 700 0.2923
0.0987 0.3311 800 0.3048
0.103 0.3725 900 0.2841
0.0893 0.4139 1000 0.2759
0.0757 0.4553 1100 0.2625
0.068 0.4967 1200 0.2784
0.0608 0.5381 1300 0.2813
0.0404 0.5795 1400 0.2739
0.0422 0.6209 1500 0.2762

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
24
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for neuronbit/uaspeech-large-finetune-shorter-evals

Finetuned
(385)
this model