gemma-2-2b-it-quantized.w8a16
Model Overview
- Model Architecture: Gemma 2
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: INT8
- Intended Use Cases: Intended for commercial and research use in English. Similarly to gemma-2-2b, this is a pre-trained base model that can be used as is or specialized to specific domains.
- Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- Release Date: 8/13/2024
- Version: 1.0
- License(s): gemma
- Model Developers: Neural Magic
Quantized version of gemma-2-2b. It achieves an average score of 52.03 on the OpenLLM benchmark (version 1), whereas the unquantized model achieves 52.16.
Model Optimizations
This model was obtained by quantizing the weights of gemma-2-2b to INT8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights. The GPTQ algorithm is applied for quantization, as implemented in the llm-compressor library. GPTQ used a 1% damping factor and 256 sequences sequences taken from Neural Magic's LLM compression calibration dataset.
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic/gemma-2-2b-quantized.w8a16"
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "user", "content": "Who are you? Please respond in pirate speak!"},
]
prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
llm = LLM(model=model_id)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created by using the llm-compressor library as presented in the code snipet below.
from transformers import AutoTokenizer
from datasets import load_dataset
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
model_id = "google/gemma-2-2b"
num_samples = 256
max_seq_len = 8192
tokenizer = AutoTokenizer.from_pretrained(model_id)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)
recipe = GPTQModifier(
targets="Linear",
scheme="W8A16",
ignore=["lm_head"],
dampening_frac=0.01,
)
model = SparseAutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
trust_remote_code=True,
)
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
model.save_pretrained("gemma-2-2b-quantized.w8a16")
Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (version 1) with the lm-evaluation-harness (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the vLLM engine, using the following command:
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/gemma-2-2b-quantized.w8a16",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
--tasks openllm \
--batch_size auto
Accuracy
Open LLM Leaderboard evaluation scores
Benchmark | gemma-2-2b | gemma-2-2b-quantized.w8a16 (this model) | Recovery |
MMLU (5-shot) | 53.01 | 52.86 | 99.7% |
ARC Challenge (25-shot) | 53.92 | 54.27 | 100.6% |
GSM-8K (5-shot, strict-match) | 24.03 | 23.81 | 99.1% |
Hellaswag (10-shot) | 74.74 | 74.56 | 99.8% |
Winogrande (5-shot) | 70.96 | 70.56 | 99.4% |
TruthfulQA (0-shot) | 36.29 | 36.15 | 99.6% |
Average | 52.16 | 52.03 | 99.8% |
- Downloads last month
- 48