File size: 1,669 Bytes
1bb3f91
 
 
 
 
 
 
 
 
 
0333dc3
 
 
 
 
 
 
 
 
 
 
eac389f
0333dc3
 
eac389f
0333dc3
 
 
 
eac389f
0333dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eac389f
0333dc3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
tags:
- fp8
- vllm
---

Run with `vllm==0.6.2` on 1xH100:
```
vllm serve neuralmagic/Llama-3.2-11B-Vision-Instruct-FP8-dynamic --enforce-eager --max-num-seqs 16
```

## Evaluation

```
TBD
```

## Creation
https://github.com/vllm-project/llm-compressor/pull/185

```python
from transformers import AutoProcessor, MllamaForConditionalGeneration

from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot, wrap_hf_model_class

MODEL_ID = "meta-llama/Llama-3.2-11B-Vision-Instruct"

# Load model.
model_class = wrap_hf_model_class(MllamaForConditionalGeneration)
model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)

# Configure the quantization algorithm and scheme.
# In this case, we:
#   * quantize the weights to fp8 with per channel via ptq
#   * quantize the activations to fp8 with dynamic per token
recipe = QuantizationModifier(
    targets="Linear",
    scheme="FP8_DYNAMIC",
    ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_model.*"],
)

# Apply quantization and save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR)
processor.save_pretrained(SAVE_DIR)

# Confirm generations of the quantized model look sane.
print("========== SAMPLE GENERATION ==============")
input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=20)
print(processor.decode(output[0]))
print("==========================================")
```