mgoin commited on
Commit
0333dc3
·
verified ·
1 Parent(s): c0ee264

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ## Evaluation
3
+
4
+ ```
5
+ TBD
6
+ ```
7
+
8
+ ## Creation
9
+ https://github.com/vllm-project/llm-compressor/pull/185
10
+
11
+ ```python
12
+ from transformers import AutoProcessor
13
+
14
+ from llmcompressor.modifiers.quantization import QuantizationModifier
15
+ from llmcompressor.transformers import oneshot
16
+ from llmcompressor.transformers.sparsification import create_sparse_auto_model_class
17
+
18
+ MODEL_ID = "meta-llama/Llama-3.2-11B-Vision-Instruct"
19
+
20
+ # Load model.
21
+ model_class = create_sparse_auto_model_class("MllamaForConditionalGeneration")
22
+ model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto")
23
+ processor = AutoProcessor.from_pretrained(MODEL_ID)
24
+
25
+ # Configure the quantization algorithm and scheme.
26
+ # In this case, we:
27
+ # * quantize the weights to fp8 with per channel via ptq
28
+ # * quantize the activations to fp8 with dynamic per token
29
+ recipe = QuantizationModifier(
30
+ targets="Linear",
31
+ scheme="FP8_DYNAMIC",
32
+ ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_model.*"],
33
+ )
34
+
35
+ # Apply quantization and save to disk in compressed-tensors format.
36
+ SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
37
+ oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR)
38
+
39
+ # Confirm generations of the quantized model look sane.
40
+ print("========== SAMPLE GENERATION ==============")
41
+ input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda")
42
+ output = model.generate(input_ids, max_new_tokens=20)
43
+ print(processor.decode(output[0]))
44
+ print("==========================================")
45
+ ```