Llama-3.3-70B-Instruct-quantized.w8a8
Model Overview
- Model Architecture: Llama
- Input: Text
- Output: Text
- Model Optimizations:
- Activation quantization: INT8
- Weight quantization: INT8
- Intended Use Cases: Intended for commercial and research use multiple languages. Similarly to Llama-3.3-70B-Instruct, this models is intended for assistant-like chat.
- Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws).
- Release Date: 01/20/2025
- Version: 1.0
- Model Developers: Neural Magic
Quantized version of Llama-3.3-70B-Instruct. It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation. Llama-3.3-70B-Instruct-quantized.w8a8 achieves 99.4% recovery for OpenLLM v1 (using Meta's prompting when available) and 100% for both HumanEval and HumanEval+ pass@1.
Model Optimizations
This model was obtained by quantizing the weights and activations of Llama-3.3-70B-Instruct to INT8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension. Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations.
Deployment
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8"
number_gpus = 1
max_model_len = 8192
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created by using the llm-compressor library as presented in the code snipet below.
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import Dataset
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
import random
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
num_samples = 1024
max_seq_len = 8192
tokenizer = AutoTokenizer.from_pretrained(model_id)
max_token_id = len(tokenizer.get_vocab()) - 1
input_ids = [[random.randint(0, max_token_id) for _ in range(max_seq_len)] for _ in range(num_samples)]
attention_mask = num_samples * [max_seq_len * [1]]
ds = Dataset.from_dict({"input_ids": input_ids, "attention_mask": attention_mask})
recipe = GPTQModifier(
targets="Linear",
scheme="W8A8",
ignore=["lm_head"],
dampening_frac=0.01,
)
model = SparseAutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
)
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
model.save_pretrained("Llama-3.3-70B-Instruct-quantized.w8a8")
Evaluation
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval+ benchmarks. In all cases, model outputs were generated with the vLLM engine.
OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of lm-evaluation-harness (branch llama_3.1_instruct). This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of Meta-Llama-3.1-Instruct-evals and a few fixes to OpenLLM v2 tasks.
HumanEval and HumanEval+ evaluations were conducted using Neural Magic's fork of the EvalPlus repository.
Accuracy
Category | Benchmark | Llama-3.3-70B-Instruct | Llama-3.3-70B-Instruct-quantized.w8a8 (this model) | Recovery |
---|---|---|---|---|
OpenLLM v1 | MMLU (5-shot) | 81.60 | 81.19 | 99.5% |
MMLU (CoT, 0-shot) | 86.58 | 85.92 | 99.2% | |
ARC Challenge (0-shot) | 49.23 | 48.04 | 97.6% | |
GSM-8K (CoT, 8-shot, strict-match) | 94.16 | 94.01 | 99.8% | |
Hellaswag (10-shot) | 86.49 | 86.47 | 100.0% | |
Winogrande (5-shot) | 84.77 | 83.74 | 98.8% | |
TruthfulQA (0-shot, mc2) | 62.75 | 63.09 | 99.5% | |
Average | 77.94 | 77.49 | 99.4% | |
OpenLLM v2 | MMLU-Pro (5-shot) | 51.89 | 51.59 | 99.7% |
IFEval (0-shot) | 90.89 | 90.68 | 99.4% | |
BBH (3-shot) | 63.15 | 62.54 | 99.0% | |
Math-lvl-5 (4-shot) | 0.17 | 0.00 | N/A | |
GPQA (0-shot) | 46.10 | 46.44 | 100.8% | |
MuSR (0-shot) | 44.35 | 44.34 | 100.0% | |
Average | 49.42 | 49.27 | 99.7% | |
Coding | HumanEval pass@1 | 83.20 | 83.30 | 100.1% |
HumanEval+ pass@1 | 78.40 | 78.60 | 100.3% | |
Multilingual | Portuguese MMLU (5-shot) | 79.76 | 79.47 | 99.6% |
Spanish MMLU (5-shot) | 79.33 | 79.23 | 99.9% | |
Italian MMLU (5-shot) | 79.15 | 78.80 | 99.6% | |
German MMLU (5-shot) | 77.94 | 77.92 | 100.0% | |
French MMLU (5-shot) | 75.69 | 75.79 | 100.1% | |
Hindi MMLU (5-shot) | 73.81 | 73.49 | 99.6% | |
Thai MMLU (5-shot) | 71.97 | 71.44 | 99.2% |
Reproduction
The results were obtained using the following commands:
MMLU
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU-CoT
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
--tasks mmlu_cot_0shot_llama_3.1_instruct \
--apply_chat_template \
--num_fewshot 0 \
--batch_size auto
ARC-Challenge
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
--tasks arc_challenge_llama_3.1_instruct \
--apply_chat_template \
--num_fewshot 0 \
--batch_size auto
GSM-8K
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
--tasks gsm8k_cot_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 8 \
--batch_size auto
Hellaswag
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
--tasks hellaswag \
--num_fewshot 10 \
--batch_size auto
Winogrande
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
--tasks winogrande \
--num_fewshot 5 \
--batch_size auto
TruthfulQA
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
--tasks truthfulqa \
--num_fewshot 0 \
--batch_size auto
OpenLLM v2
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
--apply_chat_template \
--fewshot_as_multiturn \
--tasks leaderboard \
--batch_size auto
MMLU Portuguese
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_pt_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU Spanish
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_es_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU Italian
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_it_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU German
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_de_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU French
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_fr_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU Hindi
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_hi_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU Thai
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_th_llama_3.1_instruct \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
HumanEval and HumanEval+
Generation
python3 codegen/generate.py \
--model neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8 \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
Sanitization
python3 evalplus/sanitize.py \
humaneval/neuralmagic-ent--Llama-3.3-70B-Instruct-quantized.w8a8_vllm_temp_0.2
Evaluation
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/neuralmagic-ent--Llama-3.3-70B-Instruct-quantized.w8a8_vllm_temp_0.2-sanitized
- Downloads last month
- 34
Model tree for neuralmagic-ent/Llama-3.3-70B-Instruct-quantized.w8a8
Base model
meta-llama/Llama-3.1-70B