metadata
license: apache-2.0
library_name: transformers
base_model:
- mistralai/Mistral-Nemo-Instruct-2407
datasets:
- nbeerbower/gutenberg2-dpo
model-index:
- name: mistral-nemo-gutenberg2-12B-test
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 33.85
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-gutenberg2-12B-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 32.04
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-gutenberg2-12B-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 10.2
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-gutenberg2-12B-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.95
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-gutenberg2-12B-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.97
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-gutenberg2-12B-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.39
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/mistral-nemo-gutenberg2-12B-test
name: Open LLM Leaderboard
mistral-nemo-gutenberg2-12B-test
mistralai/Mistral-Nemo-Instruct-2407 finetuned on nbeerbower/gutenberg2-dpo.
This model is a test for the sake of benchmarking my gutenberg2 dataset.
Method
Finetuned using an RTX 3090 for 3 epochs.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 20.73 |
IFEval (0-Shot) | 33.85 |
BBH (3-Shot) | 32.04 |
MATH Lvl 5 (4-Shot) | 10.20 |
GPQA (0-shot) | 8.95 |
MuSR (0-shot) | 10.97 |
MMLU-PRO (5-shot) | 28.39 |