metadata
license: gemma
library_name: transformers
base_model:
- UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3
datasets:
- jondurbin/gutenberg-dpo-v0.1
model-index:
- name: gemma2-gutenberg-9B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 27.96
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/gemma2-gutenberg-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 42.36
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/gemma2-gutenberg-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 1.44
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/gemma2-gutenberg-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.74
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/gemma2-gutenberg-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 16.71
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/gemma2-gutenberg-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 35.47
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/gemma2-gutenberg-9B
name: Open LLM Leaderboard
gemma2-gutenberg-9B
UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 finetuned on jondurbin/gutenberg-dpo-v0.1.
Method
Finetuned using an RTX 4090 using ORPO for 3 epochs.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 22.61 |
IFEval (0-Shot) | 27.96 |
BBH (3-Shot) | 42.36 |
MATH Lvl 5 (4-Shot) | 1.44 |
GPQA (0-shot) | 11.74 |
MuSR (0-shot) | 16.71 |
MMLU-PRO (5-shot) | 35.47 |