metadata
license: llama3.1
library_name: transformers
tags:
- mergekit
- merge
base_model:
- nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
- mlabonne/Llama-3-70B-Instruct-abliterated-LORA
model-index:
- name: Llama-3.1-Nemotron-lorablated-70B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 71.47
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama-3.1-Nemotron-lorablated-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 48.06
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama-3.1-Nemotron-lorablated-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 23.34
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama-3.1-Nemotron-lorablated-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.89
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama-3.1-Nemotron-lorablated-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 14.92
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama-3.1-Nemotron-lorablated-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 43.46
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama-3.1-Nemotron-lorablated-70B
name: Open LLM Leaderboard
Llama-3.1-Nemotron-lorablated-70B
An uncensored version of nvidia/Llama-3.1-Nemotron-70B-Instruct-HF created by merging mlabonne/Llama-3-70B-Instruct-abliterated-LORA using task arithmetic.
Method
This model was created using mergekit.
From Ubuntu 24.04 (as root):
apt update
apt install pipx
git clone https://github.com/arcee-ai/mergekit.git
cd mergekit && pipx install -e .
mergekit-yaml config.yaml Llama-3.1-Nemotron-lorablated-70B --allow-crimes --lora-merge-cache=./cache
See @mlabonne's Llama-3.1-70B-Instruct-lorablated for more details on how the LoRA was extracted.
Configuration
The following YAML configuration was used to produce this model:
base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF+mlabonne/Llama-3-70B-Instruct-abliterated-LORA
dtype: bfloat16
merge_method: task_arithmetic
parameters:
normalize: false
slices:
- sources:
- layer_range: [0, 80]
model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF+mlabonne/Llama-3-70B-Instruct-abliterated-LORA
parameters:
weight: 1.0
Acknowlegements
Thanks to @mlabonne, @grimjim, and @failspy for pioneering this technique for uncensoring models.
Compute provided by Hetzner and funded by Schneewolf Labs.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 33.69 |
IFEval (0-Shot) | 71.47 |
BBH (3-Shot) | 48.06 |
MATH Lvl 5 (4-Shot) | 23.34 |
GPQA (0-shot) | 0.89 |
MuSR (0-shot) | 14.92 |
MMLU-PRO (5-shot) | 43.46 |