metadata
pipeline_tag: text-to-audio
library_name: audiocraft
language: en
tags:
- text-to-audio
- musicgen
- songstarter
license: cc-by-nc-4.0
Model Card for musicgen-songstarter-v0.2
musicgen-songstarter-v0.2 is a musicgen-stereo-melody-large
fine-tuned on a dataset of melody loops from my Splice sample library. It's intended to be used to generate song ideas that are useful for music producers. It generates stereo audio in 32khz.
Compared to musicgen-songstarter-v0.1
, this new version:
- was trained on 3x more unique, manually-curated samples that I painstakingly purchased on Splice
- Is twice the size, bumped up from size
medium
➡️large
transformer LM
If you find this model interesting, please consider:
Usage
Install audiocraft:
pip install -U git+https://github.com/facebookresearch/audiocraft#egg=audiocraft
Then, you should be able to load this model just like any other musicgen checkpoint here on the Hub:
import torchaudio
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write
model = MusicGen.get_pretrained('nateraw/musicgen-songstarter-v0.2')
model.set_generation_params(duration=8) # generate 8 seconds.
wav = model.generate_unconditional(4) # generates 4 unconditional audio samples
descriptions = ['acoustic, guitar, melody, trap, d minor, 90 bpm'] * 3
wav = model.generate(descriptions) # generates 3 samples.
melody, sr = torchaudio.load('./assets/bach.mp3')
# generates using the melody from the given audio and the provided descriptions.
wav = model.generate_with_chroma(descriptions, melody[None].expand(3, -1, -1), sr)
for idx, one_wav in enumerate(wav):
# Will save under {idx}.wav, with loudness normalization at -14 db LUFS.
audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True)
Prompt Format
Follow the following prompt format:
{tag_1}, {tag_1}, ..., {tag_n}, {key}, {bpm} bpm
For example:
hip hop, soul, piano, chords, jazz, neo jazz, G# minor, 140 bpm
Samples
Audio Prompt | Text Prompt | Output |
---|---|---|
trap, synthesizer, songstarters, dark, G# minor, 140 bpm | ||
acoustic, guitar, melody, trap, D minor, 90 bpm |
Acknowledgements
This work would not have been possible without:
- Lambda Labs, for subsidizing larger training runs by providing some compute credits
- Replicate, for early development compute resources
Thank you ❤️