metadata
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8594910162670748
- task:
type: token-classification
name: Token Classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.de
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.8933874259988173
verified: true
- name: Precision
type: precision
value: 0.8940691829511317
verified: true
- name: Recall
type: recall
value: 0.9114808778380017
verified: true
- name: F1
type: f1
value: 0.9026910761677033
verified: true
- name: loss
type: loss
value: 0.4236985743045807
verified: true
xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset. It achieves the following results on the evaluation set:
- Loss: 0.1348
- F1: 0.8595
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
0.2556 | 1.0 | 525 | 0.1629 | 0.8218 |
0.1309 | 2.0 | 1050 | 0.1378 | 0.8522 |
0.0812 | 3.0 | 1575 | 0.1348 | 0.8595 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3