license: apache-2.0 | |
tags: | |
- generated_from_trainer | |
datasets: | |
- tweet_eval | |
metrics: | |
- accuracy | |
- f1 | |
base_model: google/bert_uncased_L-2_H-128_A-2 | |
model-index: | |
- name: tiny-vanilla-target-tweet | |
results: | |
- task: | |
type: text-classification | |
name: Text Classification | |
dataset: | |
name: tweet_eval | |
type: tweet_eval | |
config: emotion | |
split: train | |
args: emotion | |
metrics: | |
- type: accuracy | |
value: 0.7032085561497327 | |
name: Accuracy | |
- type: f1 | |
value: 0.704229444708009 | |
name: F1 | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# tiny-vanilla-target-tweet | |
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the tweet_eval dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.9887 | |
- Accuracy: 0.7032 | |
- F1: 0.7042 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 3e-05 | |
- train_batch_size: 32 | |
- eval_batch_size: 32 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: constant | |
- num_epochs: 200 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | | |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | |
| 1.1604 | 4.9 | 500 | 0.9784 | 0.6604 | 0.6290 | | |
| 0.7656 | 9.8 | 1000 | 0.8273 | 0.7139 | 0.6905 | | |
| 0.534 | 14.71 | 1500 | 0.8138 | 0.7219 | 0.7143 | | |
| 0.3832 | 19.61 | 2000 | 0.8591 | 0.7086 | 0.7050 | | |
| 0.2722 | 24.51 | 2500 | 0.9250 | 0.7112 | 0.7118 | | |
| 0.1858 | 29.41 | 3000 | 0.9887 | 0.7032 | 0.7042 | | |
### Framework versions | |
- Transformers 4.25.1 | |
- Pytorch 1.12.1 | |
- Datasets 2.7.1 | |
- Tokenizers 0.13.2 | |