LLama3-3B-finetuning
This model is a fine-tuned version of meta-llama/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4744
- Accuracy: 0.8077
- F1 Macro: 0.8046
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro |
---|---|---|---|---|---|
2.4745 | 1.0 | 149 | 1.1147 | 0.5471 | 0.5000 |
1.0995 | 2.0 | 298 | 0.5006 | 0.8047 | 0.8023 |
0.7117 | 3.0 | 447 | 0.4292 | 0.8215 | 0.8218 |
0.5494 | 4.0 | 596 | 0.4039 | 0.8468 | 0.8469 |
0.4276 | 5.0 | 745 | 0.3924 | 0.8418 | 0.8415 |
0.2451 | 6.0 | 894 | 0.4101 | 0.8300 | 0.8312 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Model tree for msab97/LLama3-3B-finetuning
Base model
meta-llama/Llama-3.2-3B