librarian-bot's picture
Librarian Bot: Add base_model information to model
403803d
|
raw
history blame
2.26 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - disease
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: plncmm/roberta-clinical-wl-es
model-index:
  - name: spanish-disease-tagger
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: disease
          type: disease
          config: disease
          split: train
          args: disease
        metrics:
          - type: precision
            value: 0.8385373870172556
            name: Precision
          - type: recall
            value: 0.8711054204011951
            name: Recall
          - type: f1
            value: 0.8545111994975926
            name: F1
          - type: accuracy
            value: 0.9487721041951381
            name: Accuracy

spanish-disease-tagger

This model is a fine-tuned version of plncmm/roberta-clinical-wl-es on the disease dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1786
  • Precision: 0.8385
  • Recall: 0.8711
  • F1: 0.8545
  • Accuracy: 0.9488

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2217 1.0 502 0.1698 0.8142 0.8587 0.8359 0.9437
0.1203 2.0 1004 0.1735 0.8513 0.8528 0.8520 0.9473
0.093 3.0 1506 0.1786 0.8385 0.8711 0.8545 0.9488

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2