librarian-bot's picture
Librarian Bot: Add base_model information to model
7df2cb0
|
raw
history blame
2.22 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - wl
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: plncmm/roberta-clinical-wl-es
model-index:
  - name: spanish-clinical-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: wl
          type: wl
          config: WL
          split: train
          args: WL
        metrics:
          - type: precision
            value: 0.6868542362104594
            name: Precision
          - type: recall
            value: 0.7348639455782313
            name: Recall
          - type: f1
            value: 0.7100484758853013
            name: F1
          - type: accuracy
            value: 0.8262735659847573
            name: Accuracy

spanish-clinical-ner

This model is a fine-tuned version of plncmm/roberta-clinical-wl-es on the wl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6181
  • Precision: 0.6869
  • Recall: 0.7349
  • F1: 0.7100
  • Accuracy: 0.8263

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.0283 1.0 500 0.6862 0.6690 0.6959 0.6822 0.8091
0.599 2.0 1000 0.6198 0.6856 0.7276 0.7059 0.8252
0.4973 3.0 1500 0.6181 0.6869 0.7349 0.7100 0.8263

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.2