|
--- |
|
language: es |
|
thumbnail: https://i.imgur.com/jgBdimh.png |
|
--- |
|
|
|
# Spanish BERT (BETO) + NER |
|
|
|
This model is a fine-tuned on [NER-C](https://www.kaggle.com/nltkdata/conll-corpora) version of the Spanish BERT cased [(BETO)](https://github.com/dccuchile/beto) for **NER** downstream task. |
|
|
|
## Details of the downstream task (NER) - Dataset |
|
|
|
- [Dataset: CONLL Corpora ES](https://www.kaggle.com/nltkdata/conll-corpora) |
|
|
|
I preprocessed the dataset and split it as train / dev (80/20) |
|
|
|
| Dataset | # Examples | |
|
| ---------------------- | ----- | |
|
| Train | 8.7 K | |
|
| Dev | 2.2 K | |
|
|
|
|
|
- [Fine-tune on NER script provided by Huggingface](https://github.com/huggingface/transformers/blob/master/examples/token-classification/run_ner_old.py) |
|
|
|
- Labels covered: |
|
|
|
``` |
|
B-LOC |
|
B-MISC |
|
B-ORG |
|
B-PER |
|
I-LOC |
|
I-MISC |
|
I-ORG |
|
I-PER |
|
O |
|
``` |
|
|
|
## Metrics on evaluation set: |
|
|
|
| Metric | # score | |
|
| :------------------------------------------------------------------------------------: | :-------: | |
|
| F1 | **90.17** |
|
| Precision | **89.86** | |
|
| Recall | **90.47** | |
|
|
|
## Comparison: |
|
|
|
| Model | # F1 score |Size(MB)| |
|
| :--------------------------------------------------------------------------------------------------------------: | :-------: |:------| |
|
| bert-base-spanish-wwm-cased (BETO) | 88.43 | 421 |
|
| [bert-spanish-cased-finetuned-ner (this one)](https://huggingface.co/mrm8488/bert-spanish-cased-finetuned-ner) | **90.17** | 420 | |
|
| Best Multilingual BERT | 87.38 | 681 | |
|
|[TinyBERT-spanish-uncased-finetuned-ner](https://huggingface.co/mrm8488/TinyBERT-spanish-uncased-finetuned-ner) | 70.00 | **55** | |
|
|
|
## Model in action |
|
|
|
Fast usage with **pipelines**: |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
nlp_ner = pipeline( |
|
"ner", |
|
model="mrm8488/bert-spanish-cased-finetuned-ner", |
|
tokenizer=( |
|
'mrm8488/bert-spanish-cased-finetuned-ner', |
|
{"use_fast": False} |
|
)) |
|
|
|
text = 'Mis amigos están pensando viajar a Londres este verano' |
|
|
|
nlp_ner(text) |
|
|
|
#Output: [{'entity': 'B-LOC', 'score': 0.9998720288276672, 'word': 'Londres'}] |
|
``` |
|
|
|
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) |
|
|
|
> Made with <span style="color: #e25555;">♥</span> in Spain |
|
|