About

weighted/imatrix quants of https://huggingface.co/davidkim205/Rhea-72b-v0.5

the imatrix was calculated on a reduced 40k token set (the "quarter" set) as the full token set caused overflows in the model (likely a model bug)

static quants are available at https://huggingface.co/mradermacher/Rhea-72b-v0.5-GGUF

Usage

If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.

Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Link Type Size/GB Notes
GGUF i1-IQ1_S 20.5 for the desperate
GGUF i1-IQ1_M 21.8 mostly desperate
GGUF i1-IQ2_XXS 24.0
GGUF i1-IQ2_XS 26.0
GGUF i1-IQ2_S 27.6
GGUF i1-IQ2_M 29.4
GGUF i1-Q2_K 31.1 IQ3_XXS probably better
GGUF i1-IQ3_XXS 31.9 lower quality
GGUF i1-IQ3_XS 34.0
GGUF i1-IQ3_S 35.6 beats Q3_K*
GGUF i1-Q3_K_S 35.6 IQ3_XS probably better
GGUF i1-IQ3_M 37.3
GGUF i1-Q3_K_M 39.3 IQ3_S probably better
GGUF i1-Q3_K_L 42.6 IQ3_M probably better
GGUF i1-IQ4_XS 42.8
GGUF i1-IQ4_NL 45.1 prefer IQ4_XS
GGUF i1-Q4_0 45.2 fast, low quality
GGUF i1-Q4_K_S 45.3 optimal size/speed/quality
GGUF i1-Q4_K_M 47.8 fast, recommended
PART 1 PART 2 i1-Q5_K_S 53.9
PART 1 PART 2 i1-Q5_K_M 55.4
PART 1 PART 2 i1-Q6_K 63.4 practically like static Q6_K

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.

Thanks

I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.

Downloads last month
31
GGUF
Model size
72.3B params
Architecture
llama

1-bit

2-bit

3-bit

4-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mradermacher/Rhea-72b-v0.5-i1-GGUF

Quantized
(3)
this model