Progen2_Kinase_PhosphositeGen_dkz_traindata

This model is a fine-tuned version of hugohrban/progen2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0955
  • Perplexity: 8.1296

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Perplexity
4.7229 0.1455 100 2.1862 8.9015
4.2858 0.2909 200 2.1091 8.2405
4.2112 0.4364 300 2.0519 7.7824
4.1146 0.5818 400 2.0049 7.4252
4.0772 0.7273 500 1.9859 7.2855
3.9871 0.8727 600 1.9478 7.0130
3.891 1.0175 700 1.9204 6.8236
3.4841 1.1629 800 1.8889 6.6122
3.4596 1.3084 900 1.8696 6.4854
3.4659 1.4538 1000 1.8430 6.3152
3.433 1.5993 1100 1.8105 6.1137
3.3728 1.7447 1200 1.7991 6.0441
3.3853 1.8902 1300 1.7924 6.0040
3.1832 2.0349 1400 1.7975 6.0348
2.8198 2.1804 1500 1.7924 6.0041
2.7867 2.3258 1600 1.7604 5.8149
2.8669 2.4713 1700 1.7437 5.7183
2.795 2.6167 1800 1.7307 5.6445
2.8152 2.7622 1900 1.7188 5.5779
2.7734 2.9076 2000 1.6911 5.4256
2.5299 3.0524 2100 1.7682 5.8605
2.2126 3.1978 2200 1.7346 5.6669
2.2435 3.3433 2300 1.7104 5.5310
2.2663 3.4887 2400 1.7144 5.5536
2.2463 3.6342 2500 1.7338 5.6620
2.3117 3.7796 2600 1.6879 5.4079
2.2655 3.9251 2700 1.6946 5.4447
1.9936 4.0698 2800 1.8444 6.3244
1.7929 4.2153 2900 1.8653 6.4577
1.8214 4.3607 3000 1.7600 5.8123
1.8505 4.5062 3100 1.7855 5.9628
1.8382 4.6516 3200 1.7955 6.0225
1.7945 4.7971 3300 1.7754 5.9028
1.8238 4.9425 3400 1.7820 5.9418
1.573 5.0873 3500 1.8691 6.4823
1.4562 5.2327 3600 1.8905 6.6225
1.47 5.3782 3700 2.0037 7.4163
1.4649 5.5236 3800 1.8911 6.6268
1.4778 5.6691 3900 1.9307 6.8940
1.4985 5.8145 4000 1.9265 6.8655
1.4587 5.96 4100 1.9128 6.7720
1.258 6.1047 4200 2.0383 7.6773
1.2239 6.2502 4300 2.0444 7.7244
1.2186 6.3956 4400 2.0497 7.7658
1.2174 6.5411 4500 2.0454 7.7323
1.2051 6.6865 4600 2.0195 7.5345
1.2189 6.832 4700 2.0461 7.7376
1.2061 6.9775 4800 2.0435 7.7176
1.0575 7.1222 4900 2.0885 8.0727
1.048 7.2676 5000 2.0955 8.1296

Framework versions

  • PEFT 0.13.2
  • Transformers 4.47.1
  • Pytorch 2.1.0.post301
  • Datasets 3.0.2
  • Tokenizers 0.21.0
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mpekey/Progen2_Kinase_PhosphositeGen_dkz_traindata

Adapter
(3)
this model