Progen2_Kinase_PhosphositeGen

This model is a fine-tuned version of hugohrban/progen2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0025
  • Perplexity: 7.4078

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Perplexity
4.9303 0.1415 100 2.1811 8.8564
4.2874 0.2831 200 2.1198 8.3296
4.1941 0.4246 300 2.0694 7.9202
4.0803 0.5662 400 2.0362 7.6616
4.0613 0.7077 500 2.0053 7.4284
3.9511 0.8493 600 1.9922 7.3315
3.9216 0.9908 700 1.9477 7.0124
3.5053 1.1316 800 1.9200 6.8208
3.4311 1.2732 900 1.9035 6.7094
3.4238 1.4147 1000 1.8714 6.4974
3.392 1.5563 1100 1.8527 6.3772
3.3621 1.6978 1200 1.8317 6.2444
3.3577 1.8393 1300 1.8237 6.1945
3.3419 1.9809 1400 1.7889 5.9826
2.8256 2.1217 1500 1.7977 6.0356
2.8061 2.2633 1600 1.7860 5.9653
2.7837 2.4048 1700 1.7666 5.8507
2.7504 2.5464 1800 1.7428 5.7133
2.829 2.6879 1900 1.7288 5.6337
2.7567 2.8294 2000 1.7088 5.5225
2.7443 2.9710 2100 1.6986 5.4664
2.3409 3.1118 2200 1.7382 5.6869
2.2568 3.2534 2300 1.7487 5.7471
2.2481 3.3949 2400 1.7181 5.5740
2.2323 3.5364 2500 1.7058 5.5059
2.2654 3.6780 2600 1.7031 5.4912
2.2611 3.8195 2700 1.6707 5.3157
2.256 3.9611 2800 1.6719 5.3222
1.8849 4.1019 2900 1.7899 5.9886
1.771 4.2435 3000 1.7697 5.8694
1.7992 4.3850 3100 1.7880 5.9775
1.838 4.5265 3200 1.7871 5.9722
1.8285 4.6681 3300 1.7342 5.6644
1.8127 4.8096 3400 1.7196 5.5825
1.8353 4.9512 3500 1.7471 5.7377
1.5511 5.0920 3600 1.8285 6.2248
1.4449 5.2335 3700 1.8683 6.4770
1.4631 5.3751 3800 1.8880 6.6063
1.4525 5.5166 3900 1.8807 6.5581
1.4516 5.6582 4000 1.8723 6.5031
1.4423 5.7997 4100 1.8828 6.5716
1.4626 5.9413 4200 1.8535 6.3824
1.3065 6.0821 4300 1.9369 6.9369
1.1889 6.2236 4400 1.9767 7.2191
1.1865 6.3652 4500 1.9845 7.2752
1.1927 6.5067 4600 2.0029 7.4103
1.1937 6.6483 4700 1.9931 7.3380
1.1893 6.7898 4800 1.9814 7.2532
1.1654 6.9314 4900 1.9931 7.3383
1.1036 7.0722 5000 2.0025 7.4078

Framework versions

  • PEFT 0.13.2
  • Transformers 4.47.1
  • Pytorch 2.1.0.post301
  • Datasets 3.0.2
  • Tokenizers 0.21.0
Downloads last month
58
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mpekey/Progen2_Kinase_PhosphositeGen

Adapter
(3)
this model