mpac-bge-large / README.md
antonioanerao's picture
Update README.md
2f39d2b verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:30
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-large-en-v1.5
widget:
  - source_sentence: >-
      O NAT foi criado em 13 de setembro de 2012 pelo Ato n.º 25 da
      Procuradoria-Geral de Justiça do MPAC.
    sentences:
      - Quando o NAT foi criado?
      - O que significa NAT?
      - Quem instituiu o NAT?
  - source_sentence: >-
      A Lei Complementar n.º 291 de 2014 regulamentou o NAT como um órgão
      auxiliar do MPAC, fortalecendo seu papel de apoio técnico e científico.
    sentences:
      - O NAT é parte de qual organização?
      - Qual é a função do NAT no MPAC?
      - Como o NAT foi regulamentado pela Lei Complementar 291?
  - source_sentence: >-
      O NAT é o Núcleo de Apoio Técnico do MPAC, criado para prestar apoio em
      inteligência, segurança e operações técnico-científicas aos órgãos de
      execução, especialmente ao GAECO.
    sentences:
      - Quem são os coordenadores do NAT?
      - Qual é a função do NAT no LAB-LD?
      - Me explique o que é o NAT no Ministério Público.
  - source_sentence: >-
      O NAT é responsável por fornecer inteligência, suporte técnico-científico
      e segurança ao MPAC, além de gerenciar o SIMBA e o LAB-LD.
    sentences:
      - O que é o SIMBA, gerenciado pelo NAT?
      - Quais são as responsabilidades do NAT?
      - Para que foi criado o NAT?
  - source_sentence: >-
      NAT é o Núcleo de Apoio Técnico do Ministério Público do Estado do Acre,
      criado para fornecer suporte especializado em inteligência, segurança
      institucional e operações técnico-científicas.
    sentences:
      - Explique o que é o NAT no MPAC.
      - O NAT trabalha com o GAECO?
      - O que significa NAT no Ministério Público?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: MPAC BGE Large
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.5
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.75
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 1
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.25
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.2
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.1
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.75
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 1
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7544456402014998
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.675
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.675
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.5
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 1
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 1
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.2
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.1
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 1
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 1
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7827324383928644
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7083333333333333
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7083333333333333
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.5
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.75
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 1
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.25
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.2
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.1
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.75
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 1
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7544456402014998
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.675
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.675
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.5
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.75
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 1
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.25
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.2
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.1
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.75
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 1
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7326691395183482
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6458333333333333
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6458333333333333
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.5
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 1
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.16666666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.2
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.1
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 1
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7043823413269836
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6125
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6125
            name: Cosine Map@100

MPAC BGE Large

This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-large-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("mpac/mpac-bge-large")
# Run inference
sentences = [
    'NAT é o Núcleo de Apoio Técnico do Ministério Público do Estado do Acre, criado para fornecer suporte especializado em inteligência, segurança institucional e operações técnico-científicas.',
    'O que significa NAT no Ministério Público?',
    'O NAT trabalha com o GAECO?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_768 dim_512 dim_256 dim_128 dim_64
cosine_accuracy@1 0.5 0.5 0.5 0.5 0.5
cosine_accuracy@3 0.75 1.0 0.75 0.75 0.5
cosine_accuracy@5 1.0 1.0 1.0 1.0 1.0
cosine_accuracy@10 1.0 1.0 1.0 1.0 1.0
cosine_precision@1 0.5 0.5 0.5 0.5 0.5
cosine_precision@3 0.25 0.3333 0.25 0.25 0.1667
cosine_precision@5 0.2 0.2 0.2 0.2 0.2
cosine_precision@10 0.1 0.1 0.1 0.1 0.1
cosine_recall@1 0.5 0.5 0.5 0.5 0.5
cosine_recall@3 0.75 1.0 0.75 0.75 0.5
cosine_recall@5 1.0 1.0 1.0 1.0 1.0
cosine_recall@10 1.0 1.0 1.0 1.0 1.0
cosine_ndcg@10 0.7544 0.7827 0.7544 0.7327 0.7044
cosine_mrr@10 0.675 0.7083 0.675 0.6458 0.6125
cosine_map@100 0.675 0.7083 0.675 0.6458 0.6125

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 30 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 30 samples:
    positive anchor
    type string string
    details
    • min: 38 tokens
    • mean: 54.3 tokens
    • max: 75 tokens
    • min: 8 tokens
    • mean: 13.5 tokens
    • max: 18 tokens
  • Samples:
    positive anchor
    O NAT foi criado em 13 de setembro de 2012 pelo Ato n.º 25 da Procuradoria-Geral de Justiça do MPAC. Quando o NAT foi criado?
    O NAT é vinculado à Procuradoria-Geral de Justiça e presta apoio técnico especializado ao MPAC. O NAT é vinculado a qual órgão?
    Os coordenadores do Núcleo de Apoio Técnico (NAT) são Marcela Cristina Ozório, como Coordenadora Geral e Bernardo Fiterman Albano, como Coordenador Adjunto Quem são os coordenadores do NAT?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
1.0 1 0.75 0.75 0.75 0.75 0.75
2.0 2 0.7468 0.7468 0.6967 0.7654 0.6973
3.0 3 0.7544 0.7654 0.7544 0.7327 0.6967
4.0 4 0.7544 0.7827 0.7544 0.7327 0.7044
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.7
  • Sentence Transformers: 3.3.1
  • Transformers: 4.41.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.1.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}