layoutlmv3-base-cord

This model is a fine-tuned version of microsoft/layoutlmv3-base on the mp-02/cord dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1517
  • Precision: 0.9752
  • Recall: 0.9785
  • F1: 0.9768
  • Accuracy: 0.9739

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.0 100 0.8667 0.7592 0.8202 0.7885 0.8097
No log 4.0 200 0.3443 0.9122 0.9387 0.9253 0.9222
No log 6.0 300 0.2128 0.9345 0.9569 0.9456 0.9579
No log 8.0 400 0.1745 0.9440 0.9635 0.9537 0.9629
0.6362 10.0 500 0.1594 0.9559 0.9702 0.9630 0.9684
0.6362 12.0 600 0.1720 0.9630 0.9693 0.9661 0.9629
0.6362 14.0 700 0.1528 0.9607 0.9710 0.9658 0.9675
0.6362 16.0 800 0.1460 0.9638 0.9718 0.9678 0.9680
0.6362 18.0 900 0.1609 0.9614 0.9702 0.9658 0.9648
0.0536 20.0 1000 0.1517 0.9752 0.9785 0.9768 0.9739
0.0536 22.0 1100 0.1901 0.9614 0.9693 0.9653 0.9657
0.0536 24.0 1200 0.1867 0.9638 0.9718 0.9678 0.9666

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
24
Safetensors
Model size
126M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mp-02/layoutlmv3-base-cord

Finetuned
(224)
this model

Dataset used to train mp-02/layoutlmv3-base-cord

Space using mp-02/layoutlmv3-base-cord 1

Evaluation results