Moxin LLM 7B

Home Page    |    Technical Report    |    Base Model    |    Chat Model

Model

You can download our base 7B model from this link and our chat 7B model from this link.

Inference

You can use the following code to run inference with the model. The model is saved under './model/' directory. Change the model directory accordingly or use the Huggingface link.

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

torch.backends.cuda.enable_mem_efficient_sdp(False)
torch.backends.cuda.enable_flash_sdp(False)


model_name = 'moxin-org/moxin-llm-7b'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.bfloat16,
        device_map="auto",
        trust_remote_code=True,
    )

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer = tokenizer,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

prompt = "Can you explain the concept of regularization in machine learning?"

sequences = pipe(
    prompt,
    do_sample=True,
    max_new_tokens=1000,
    temperature=0.7,
    top_k=50,
    top_p=0.95,
    num_return_sequences=1,
)
print(sequences[0]['generated_text'])

Evaluation

We test the performance of our model with lm-evaluation-harness. The evaluation results on common datasets are shown below. We test on AI2 Reasoning Challenge (25-shot), HellaSwag (10-shot), MMLU (5-shot), and Winogrande (5-shot). We release the Moxin-7B-finetuned as our base model. We further finetune our base model on Tulu v2 to obtain our chat model.

Models ARC-C Hellaswag MMLU WinoGrade Ave
Mistral-7B 57.59 83.25 62.42 78.77 70.51
LLaMA 3.1-8B 54.61 81.95 65.16 77.35 69.77
LLaMA 3-8B 55.46 82.09 65.29 77.82 70.17
LLaMA 2-7B 49.74 78.94 45.89 74.27 62.21
Qwen 2-7B 57.68 80.76 70.42 77.43 71.57
gemma-7b 56.48 82.31 63.02 78.3 70.03
internlm2.5-7b 54.78 79.7 68.17 80.9 70.89
Baichuan2-7B 47.87 73.89 54.13 70.8 61.67
Yi-1.5-9B 58.36 80.36 69.54 77.53 71.48
Moxin-7B-original 53.75 75.46 59.43 70.32 64.74
Moxin-7B-finetuned 59.47 83.08 60.97 78.69 70.55

We also test the zero shot performance on AI2 Reasoning Challenge (0-shot), AI2 Reasoning Easy (0-shot), HellaSwag (0-shot), PIQA (0-shot) and Winogrande (0-shot). The results are shown below.

Models HellaSwag WinoGrade PIQA ARC-E ARC-C Ave
Mistral-7B 80.39 73.4 82.15 78.28 52.22 73.29
LLaMA 2-7B 75.99 69.06 79.11 74.54 46.42 69.02
LLaMA 2-13B 79.37 72.22 80.52 77.4 49.06 71.71
LLaMA 3.1-8B 78.92 74.19 81.12 81.06 53.67 73.79
gemma-7b 80.45 73.72 80.9 79.97 54.1 73.83
Qwen v2-7B 78.9 72.38 79.98 74.71 50.09 71.21
internlm2.5-7b 79.14 77.9 80.52 76.16 51.37 73.02
Baichuan2-7B 72.25 67.17 77.26 72.98 42.15 66.36
Yi-1.5-9B 77.86 73.01 80.74 79.04 55.03 73.14
deepseek-7b 76.13 69.77 79.76 71.04 44.8 68.3
Moxin-7B-original 72.06 66.31 78.07 71.47 48.15 67.21
Moxin-7B-finetune 80.03 75.17 82.24 81.12 58.64 75.44

Citation

@article{zhao2024fully,
  title={Fully Open Source Moxin-7B Technical Report},
  author={Zhao, Pu and Shen, Xuan and Kong, Zhenglun and Shen, Yixin and Chang, Sung-En and Rupprecht, Timothy and Lu, Lei and Nan, Enfu and Yang, Changdi and He, Yumei and others},
  journal={arXiv preprint arXiv:2412.06845},
  year={2024}
}
Downloads last month
11,840
GGUF
Model size
8.11B params
Architecture
llama
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for moxin-org/moxin-llm-7b

Quantizations
4 models