EyesNewFiveclassTryAfterYolo-agument

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0039
  • Train Accuracy: 0.9688
  • Train Top-3-accuracy: 1.0
  • Validation Loss: 0.0779
  • Validation Accuracy: 0.9688
  • Validation Top-3-accuracy: 0.9961
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1270, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
0.5486 0.9492 0.9674 0.1847 0.9492 1.0 0
0.1032 0.9492 0.9980 0.1171 0.9492 0.9961 1
0.0359 0.9688 1.0 0.1081 0.9688 0.9961 2
0.0179 0.9688 1.0 0.0958 0.9688 0.9961 3
0.0121 0.9688 1.0 0.0749 0.9688 0.9961 4
0.0074 0.9688 1.0 0.0765 0.9688 0.9961 5
0.0066 0.9688 1.0 0.0812 0.9688 0.9961 6
0.0054 0.9688 1.0 0.0823 0.9688 0.9961 7
0.0046 0.9688 1.0 0.0777 0.9688 0.9961 8
0.0039 0.9688 1.0 0.0779 0.9688 0.9961 9

Framework versions

  • Transformers 4.42.4
  • TensorFlow 2.17.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model's library. Check the docs .

Model tree for mostafasmart/EyesNewFiveclassTryAfterYolo-agument

Finetuned
(538)
this model