morganchen1007's picture
update model card README.md
9d8b3ff
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9341978866474544

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1507
  • Accuracy: 0.9342

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2891 1.0 146 0.2322 0.9068
0.2609 2.0 292 0.1710 0.9227
0.2417 3.0 438 0.1830 0.9251
0.2406 4.0 584 0.1809 0.9198
0.2113 5.0 730 0.1631 0.9289
0.1812 6.0 876 0.1561 0.9308
0.2082 7.0 1022 0.1507 0.9342
0.1922 8.0 1168 0.1611 0.9294
0.1715 9.0 1314 0.1536 0.9308
0.1675 10.0 1460 0.1609 0.9289
0.194 11.0 1606 0.1499 0.9337
0.1706 12.0 1752 0.1514 0.9323

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1
  • Datasets 2.4.0
  • Tokenizers 0.12.1