distilbert-base-cased-finetuned-ner_0220_J_ORIDATA

This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5445
  • Precision: 0.8915
  • Recall: 0.9466
  • F1: 0.9182
  • Accuracy: 0.9486

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 111 0.2828 0.7395 0.8322 0.7831 0.9293
No log 2.0 222 0.2260 0.8029 0.8941 0.8460 0.9413
No log 3.0 333 0.2586 0.8131 0.9034 0.8559 0.9425
No log 4.0 444 0.2411 0.8541 0.9178 0.8848 0.9441
0.3027 5.0 555 0.2776 0.8817 0.9220 0.9014 0.9466
0.3027 6.0 666 0.2348 0.8647 0.9314 0.8968 0.9445
0.3027 7.0 777 0.2870 0.8762 0.9297 0.9021 0.9471
0.3027 8.0 888 0.3006 0.8650 0.9288 0.8958 0.9428
0.3027 9.0 999 0.3099 0.8751 0.9263 0.9000 0.9440
0.1147 10.0 1110 0.3325 0.8781 0.9398 0.9079 0.9464
0.1147 11.0 1221 0.3437 0.8909 0.9415 0.9155 0.9461
0.1147 12.0 1332 0.3512 0.8935 0.9390 0.9157 0.9468
0.1147 13.0 1443 0.3664 0.8791 0.9424 0.9096 0.9477
0.0673 14.0 1554 0.4068 0.8767 0.9398 0.9072 0.9445
0.0673 15.0 1665 0.4015 0.8808 0.9390 0.9089 0.9481
0.0673 16.0 1776 0.4220 0.8874 0.9483 0.9168 0.9467
0.0673 17.0 1887 0.4313 0.8847 0.9432 0.9130 0.9451
0.0673 18.0 1998 0.4440 0.8762 0.9415 0.9077 0.9408
0.041 19.0 2109 0.4524 0.9034 0.9508 0.9265 0.9484
0.041 20.0 2220 0.4455 0.8978 0.9458 0.9212 0.9470
0.041 21.0 2331 0.4822 0.8861 0.9492 0.9165 0.9426
0.041 22.0 2442 0.4677 0.8855 0.9441 0.9139 0.9446
0.0253 23.0 2553 0.4945 0.8858 0.9466 0.9152 0.9473
0.0253 24.0 2664 0.4882 0.8794 0.9458 0.9114 0.9443
0.0253 25.0 2775 0.5073 0.8953 0.9424 0.9182 0.9448
0.0253 26.0 2886 0.5012 0.8986 0.9466 0.9220 0.9473
0.0253 27.0 2997 0.4975 0.8850 0.9458 0.9144 0.9456
0.0166 28.0 3108 0.4944 0.8879 0.9466 0.9163 0.9474
0.0166 29.0 3219 0.5137 0.8915 0.9466 0.9182 0.9472
0.0166 30.0 3330 0.4924 0.8890 0.9432 0.9153 0.9463
0.0166 31.0 3441 0.5129 0.8884 0.9508 0.9185 0.9466
0.0114 32.0 3552 0.5184 0.8940 0.9508 0.9216 0.9448
0.0114 33.0 3663 0.5237 0.9012 0.9508 0.9254 0.9463
0.0114 34.0 3774 0.5153 0.8937 0.9475 0.9198 0.9474
0.0114 35.0 3885 0.5182 0.8947 0.95 0.9215 0.9482
0.0114 36.0 3996 0.5311 0.8937 0.9475 0.9198 0.9481
0.0087 37.0 4107 0.5334 0.8935 0.9525 0.9221 0.9483
0.0087 38.0 4218 0.5397 0.8900 0.9466 0.9175 0.9475
0.0087 39.0 4329 0.5331 0.8941 0.9449 0.9188 0.9468
0.0087 40.0 4440 0.5381 0.8962 0.9441 0.9195 0.9460
0.0069 41.0 4551 0.5394 0.8937 0.9475 0.9198 0.9479
0.0069 42.0 4662 0.5516 0.8950 0.9466 0.9201 0.9461
0.0069 43.0 4773 0.5442 0.8949 0.9449 0.9192 0.9452
0.0069 44.0 4884 0.5427 0.8927 0.9449 0.9181 0.9482
0.0069 45.0 4995 0.5515 0.8907 0.9458 0.9174 0.9461
0.0058 46.0 5106 0.5448 0.8930 0.9475 0.9194 0.9481
0.0058 47.0 5217 0.5475 0.896 0.9492 0.9218 0.9487
0.0058 48.0 5328 0.5444 0.8907 0.9466 0.9178 0.9484
0.0058 49.0 5439 0.5452 0.8945 0.9483 0.9206 0.9487
0.005 50.0 5550 0.5445 0.8915 0.9466 0.9182 0.9486

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.8.0
  • Tokenizers 0.12.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.