distilbert-finetuned-russian
This model is a fine-tuned version of DmitryPogrebnoy/distilbert-base-russian-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2469
- F1: 0.8280
- Roc Auc: 0.8853
- Accuracy: 0.7576
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.4883 | 0.14 | 100 | 0.3524 | 0.7132 | 0.8036 | 0.6324 |
0.3065 | 0.29 | 200 | 0.2797 | 0.7704 | 0.8391 | 0.7005 |
0.2765 | 0.43 | 300 | 0.2655 | 0.7793 | 0.8437 | 0.7078 |
0.2571 | 0.57 | 400 | 0.2457 | 0.7913 | 0.8530 | 0.7248 |
0.2518 | 0.72 | 500 | 0.2333 | 0.7986 | 0.8593 | 0.7255 |
0.2471 | 0.86 | 600 | 0.2439 | 0.7880 | 0.8522 | 0.7225 |
0.2324 | 1.0 | 700 | 0.2209 | 0.8049 | 0.8636 | 0.7410 |
0.2223 | 1.15 | 800 | 0.2262 | 0.8040 | 0.8615 | 0.7388 |
0.207 | 1.29 | 900 | 0.2197 | 0.8084 | 0.8679 | 0.7404 |
0.213 | 1.43 | 1000 | 0.2147 | 0.8136 | 0.8683 | 0.7488 |
0.2137 | 1.58 | 1100 | 0.2146 | 0.8102 | 0.8646 | 0.7447 |
0.2078 | 1.72 | 1200 | 0.2143 | 0.8187 | 0.8768 | 0.7481 |
0.2055 | 1.86 | 1300 | 0.2092 | 0.8118 | 0.8696 | 0.7422 |
0.2107 | 2.01 | 1400 | 0.2098 | 0.8128 | 0.8713 | 0.7461 |
0.1742 | 2.15 | 1500 | 0.2183 | 0.8220 | 0.8787 | 0.7573 |
0.1624 | 2.29 | 1600 | 0.2094 | 0.8240 | 0.8801 | 0.7594 |
0.1632 | 2.44 | 1700 | 0.2163 | 0.8231 | 0.8821 | 0.7530 |
0.1736 | 2.58 | 1800 | 0.2065 | 0.8230 | 0.8750 | 0.7616 |
0.1615 | 2.72 | 1900 | 0.2135 | 0.8172 | 0.8725 | 0.7522 |
0.1728 | 2.87 | 2000 | 0.2054 | 0.8296 | 0.8872 | 0.7562 |
0.1685 | 3.01 | 2100 | 0.2146 | 0.8243 | 0.8834 | 0.7512 |
0.1323 | 3.15 | 2200 | 0.2216 | 0.8263 | 0.8826 | 0.7589 |
0.123 | 3.3 | 2300 | 0.2234 | 0.8202 | 0.8802 | 0.7488 |
0.1316 | 3.44 | 2400 | 0.2199 | 0.8238 | 0.8810 | 0.7558 |
0.119 | 3.58 | 2500 | 0.2230 | 0.8285 | 0.8824 | 0.7659 |
0.1292 | 3.73 | 2600 | 0.2258 | 0.8226 | 0.8790 | 0.7573 |
0.1303 | 3.87 | 2700 | 0.2272 | 0.8225 | 0.8830 | 0.7499 |
0.1114 | 4.01 | 2800 | 0.2420 | 0.8207 | 0.8815 | 0.7485 |
0.0931 | 4.16 | 2900 | 0.2459 | 0.8222 | 0.8803 | 0.7556 |
0.0983 | 4.3 | 3000 | 0.2434 | 0.8264 | 0.8849 | 0.7551 |
0.0934 | 4.44 | 3100 | 0.2485 | 0.8261 | 0.8844 | 0.7567 |
0.0939 | 4.59 | 3200 | 0.2532 | 0.8174 | 0.8784 | 0.7458 |
0.0976 | 4.73 | 3300 | 0.2498 | 0.8248 | 0.8823 | 0.7571 |
0.098 | 4.87 | 3400 | 0.2469 | 0.8280 | 0.8853 | 0.7576 |
Framework versions
- Transformers 4.35.0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.14.1
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.