Hindi language model

Trained with ELECTRA base size settings

Tokenization and training CoLab

Example Notebooks

This model outperforms Multilingual BERT on Hindi movie reviews / sentiment analysis (using SimpleTransformers)

You can get higher accuracy using ktrain + TensorFlow, where you can adjust learning rate and other hyperparameters: https://colab.research.google.com/drive/1mSeeSfVSOT7e-dVhPlmSsQRvpn6xC05w?usp=sharing

Question-answering on MLQA dataset: https://colab.research.google.com/drive/1i6fidh2tItf_-IDkljMuaIGmEU6HT2Ar#scrollTo=IcFoAHgKCUiQ

A smaller model (Hindi-BERT) performs better on a BBC news classification task.

Corpus

The corpus is two files:

Bonus notes:

  • Adding English wiki text or parallel corpus could help with cross-lingual tasks and training

Vocabulary

https://drive.google.com/file/d/1-6tXrii3tVxjkbrpSJE9MOG_HhbvP66V/view?usp=sharing

Bonus notes:

  • Created with HuggingFace Tokenizers; you can increase vocabulary size and re-train; remember to change ELECTRA vocab_size

Training

Structure your files, with data-dir named "trainer" here

trainer
- vocab.txt
- pretrain_tfrecords
-- (all .tfrecord... files)
- models
-- modelname
--- checkpoint
--- graph.pbtxt
--- model.*

Conversion

Use this process to convert an in-progress or completed ELECTRA checkpoint to a Transformers-ready model:

git clone https://github.com/huggingface/transformers
python ./transformers/src/transformers/convert_electra_original_tf_checkpoint_to_pytorch.py
  --tf_checkpoint_path=./models/checkpointdir
  --config_file=config.json
  --pytorch_dump_path=pytorch_model.bin
  --discriminator_or_generator=discriminator
python
from transformers import TFElectraForPreTraining
model = TFElectraForPreTraining.from_pretrained("./dir_with_pytorch", from_pt=True)
model.save_pretrained("tf")

Once you have formed one directory with config.json, pytorch_model.bin, tf_model.h5, special_tokens_map.json, tokenizer_config.json, and vocab.txt on the same level, run:

transformers-cli upload directory
Downloads last month
32
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.