mohres's picture
Upload BertForSequenceClassification
9106abb verified
|
raw
history blame
3.06 kB
---
language:
- ar
license: apache-2.0
tags:
- generated_from_trainer
base_model: google-bert/bert-base-multilingual-uncased
datasets:
- labr
widget:
- text: كتاب يستحق القراءة
example_title: مثال 1
- text: ما عجبني بنوب
example_title: مثال 2
- text: لم يعجبني أبدا
example_title: مثال 3
- text: أنصح وبشدة قراءة الكتاب خصوصا لمن لديه اهتمام في العلوم الاجتماعية
example_title: مثال 4
- text: ماشي حالو بعطيه 4 من 10
example_title: مثال 5
model-index:
- name: Arabic-Book-Review-Sentiment-Assessment
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Arabic-Book-Review-Sentiment-Assessment
This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on [labr](https://huggingface.co/datasets/labr) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5290
## Model description
The purpose of this model is to analyze Arabic review texts and predict the appropriate rating for them, based on the sentiment and content of the review.
This can be particularly useful in tasks such as sentiment analysis, customer feedback analysis, or any application where understanding the sentiment conveyed in an Arabic textual review is important.
The labels associated with the ratings are `LABEL_0`, `LABEL_1`, `LABEL_2`, `LABEL_3`, and `LABEL_4`. These labels can be interpreted as follows:
- `LABEL_0`: Poor
- `LABEL_1`: Fair
- `LABEL_2`: Good
- `LABEL_3`: Very Good
- `LABEL_4`: Excellent
## Intended uses & limitations
While the model performs well with formal Arabic text (Examples 1, 3, and 4), it may struggle with slang or informal language, occasionally assigning higher ratings than expected (Example 2).
Additionally, the model is not capable of interpreting verbally given ratings (Example 5).
Users should be aware of these limitations and provide context-appropriate input for optimal performance.
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0459 | 1.0 | 1470 | 1.5290 |
| 0.7622 | 2.0 | 2940 | 1.6278 |
| 0.8204 | 3.0 | 4410 | 1.5341 |
| 0.6592 | 4.0 | 5880 | 1.8030 |
| 0.4976 | 5.0 | 7350 | 1.9638 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2