|
--- |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: t5-small-finetuned-tf-xsum |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-finetuned-tf-xsum |
|
|
|
This model was trained from scratch on xsum dataset. |
|
It achieves the following results on the evaluation set: |
|
|
|
- Train Loss: 2.3494 |
|
- Validation Loss: 2.1933 |
|
- Train Rouge1: 32.0241 |
|
- Train Rouge2: 10.1025 |
|
- Train Rougel: 25.8834 |
|
- Train Rougelsum: 25.9662 |
|
- Train Gen Len: 18.69 |
|
- Epoch: 8 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
|
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |
|
| :--------: | :-------------: | :----------: | :----------: | :----------: | :-------------: | :-----------: | :---: | |
|
| 2.7197 | 2.4028 | 29.6376 | 8.8596 | 22.8598 | 22.8401 | 18.82 | 1 | |
|
| 2.5822 | 2.3407 | 30.6849 | 9.3100 | 23.8971 | 23.9096 | 18.745 | 2 | |
|
| 2.5174 | 2.2979 | 32.3706 | 11.5463 | 26.4253 | 26.3525 | 18.75 | 3 | |
|
| 2.4711 | 2.2703 | 32.2768 | 11.0460 | 26.2472 | 26.1540 | 18.825 | 4 | |
|
| 2.4305 | 2.2432 | 29.3935 | 8.3337 | 22.2859 | 22.3557 | 18.65 | 5 | |
|
| 2.3994 | 2.2237 | 31.0993 | 8.7932 | 23.6971 | 23.7702 | 18.815 | 6 | |
|
| 2.3732 | 2.2071 | 31.4819 | 10.0677 | 25.1846 | 25.2829 | 18.675 | 7 | |
|
| 2.3494 | 2.1933 | 32.0241 | 10.1025 | 25.8834 | 25.9662 | 18.69 | 8 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.1 |
|
- TensorFlow 2.8.2 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|