Whisper Small ar - Mohammed Bakheet

نموذج كلام الصغير للتعرف على الصوت، هذا النموذج يتميز بدقة عالية في التعرف على الصوت باللغة العربية

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2758
  • Wer: 20.3229

Model description

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves 20.32 WER. Data augmentation can be implemented to further improve the model performance.

Intended uses & limitations

from datasets import load_dataset
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from datasets import Audio

# load the dataset
test_dataset = load_dataset("mozilla-foundation/common_voice_11_0", "ar", split="test", use_auth_token=True, trust_remote_code=True)

# get the processor and model from mohammed/whisper-small-arabic-cv-11
processor = WhisperProcessor.from_pretrained("mohammed/whisper-small-arabic-cv-11")
model = WhisperForConditionalGeneration.from_pretrained("mohammed/whisper-small-arabic-cv-11")
model.config.forced_decoder_ids = None

# resample the audio files to 16000
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16000))

# get 10 exmaples of model transcription
for i in range(10):
  sample = test_dataset[i]["audio"]
  input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features 
  predicted_ids = model.generate(input_features)
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
  print(f"{i} Reference Sentence: {test_dataset[i]['sentence']}")
  print(f"{i} Predicted Sentence: {transcription[0]}")

The output is:

0 Reference Sentence: زارني في أوائل الشهر بدري
0 Predicted Sentence: زارني في أوائل الشهر بدري 
1 Reference Sentence: إبنك بطل.
1 Predicted Sentence: ابنك بطل  
2 Reference Sentence: الواعظ الأمرد هذا الذي
2 Predicted Sentence: الوعز الأمرد هذا الذي 
3 Reference Sentence: سمح له هذا بالتخصص في البرونز الصغير، الذي يتم إنتاجه بشكل رئيسي ومربح للتصدير.
3 Predicted Sentence: صمح له هازب التخزوس في البرونز الصغير الذي زيت معنى به بشكل رئيسي من غربح للتصدير  
4 Reference Sentence: ألديك قلم ؟
4 Predicted Sentence: ألديك قلم  
5 Reference Sentence: يا نديمي قسم بي الى الصهباء
5 Predicted Sentence: يا نديمي قد سنبي إلى الصحباء  
6 Reference Sentence: إنك تكبر المشكلة.
6 Predicted Sentence: إنك تكبر المشكلة  
7 Reference Sentence: يرغب أن يلتقي بك.
7 Predicted Sentence: يرغب أن يلتقي بك  
8 Reference Sentence: إنهم لا يعرفون لماذا حتى.
8 Predicted Sentence: إنهم لا يعرفون لماذا حبت  
9 Reference Sentence: سيسعدني مساعدتك أي وقت تحب.
9 Predicted Sentence: سيسعد لمساعدتك أي وقت تحب  

Training and evaluation data

This model is trained on the Common Voice 11.0 dataset.

Training procedure

The model is trained on 64 cores CPU, Nvidia 4070 Ti with 24 GB VRAM, and 100GB Disk space. The GPU utilization reached 100%. Please check the training hyperparameters below.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.721 0.2079 250 0.3651 29.8761
0.3044 0.4158 500 0.3308 27.6497
0.262 0.6237 750 0.3085 25.2769
0.2396 0.8316 1000 0.2863 24.5298
0.1998 1.0394 1250 0.2743 23.2776
0.134 1.2473 1500 0.2749 22.9829
0.1328 1.4552 1750 0.2662 22.3315
0.1314 1.6631 2000 0.2643 21.7402
0.1262 1.8710 2250 0.2598 21.8566
0.101 2.0789 2500 0.2608 21.4248
0.0653 2.2868 2750 0.2682 20.9912
0.062 2.4947 3000 0.2638 21.0137
0.0627 2.7026 3250 0.2636 20.5369
0.0603 2.9105 3500 0.2602 20.4580
0.0456 3.1183 3750 0.2748 20.9555
0.0324 3.3262 4000 0.2702 20.4918
0.0318 3.5341 4250 0.2739 20.4355
0.0296 3.7420 4500 0.2735 20.4374
0.0291 3.9499 4750 0.2725 20.3717
0.022 4.1578 5000 0.2758 20.3229

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mohammed/whisper-small-arabic-cv-11

Finetuned
(2183)
this model

Dataset used to train mohammed/whisper-small-arabic-cv-11

Spaces using mohammed/whisper-small-arabic-cv-11 2

Evaluation results