Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bit-metaoffload-HQQ

This is a version of the Mixtral-8x7B-Instruct-v0.1 model quantized with a mix of 4-bit and 2-bit via Half-Quadratic Quantization (HQQ). More specifically, the attention layers are quantized to 4-bit and the experts are quantized to 2-bit.

The difference between this model and our previous release is that this one offloads the metadata to the CPU and you only need 13GB Vram to run it instead of 20GB!

Note: this model was updated to use a group-size of 128 instead of 256 for the scale/zero parameters, which slightly improves the overall score with a negligible increase in VRAM.

image/gif


Performance

Models Mixtral Original HQQ quantized
Runtime VRAM 94 GB 13.5 GB
ARC (25-shot) 70.22 66.55
Hellaswag (10-shot) 87.63 84.83
MMLU (5-shot) 71.16 67.39
TruthfulQA-MC2 64.58 62.80
Winogrande (5-shot) 81.37 80.03
GSM8K (5-shot) 60.73 45.41
Average 72.62 67.83

Screencast

Here is a small screencast of the model running on RTX 4090

image/gif

Basic Usage

To run the model, install the HQQ library from https://github.com/mobiusml/hqq and use it as follows:

import transformers 
from threading import Thread

model_id = 'mobiuslabsgmbh/Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bit-metaoffload-HQQ'
#Load the model
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
model     = HQQModelForCausalLM.from_quantized(model_id)

#Optional: set backend/compile
#You will need to install CUDA kernels apriori
# git clone https://github.com/mobiusml/hqq/
# cd hqq/kernels && python setup_cuda.py install
from hqq.core.quantize import *
HQQLinear.set_backend(HQQBackend.ATEN_BACKPROP)


def chat_processor(chat, max_new_tokens=100, do_sample=True):
    tokenizer.use_default_system_prompt = False
    streamer = transformers.TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_params = dict(
        tokenizer("<s> [INST] " + chat + " [/INST] ", return_tensors="pt").to('cuda'),
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=do_sample,
        top_p=0.90,
        top_k=50,
        temperature= 0.6,
        num_beams=1,
        repetition_penalty=1.2,
    )

    t = Thread(target=model.generate, kwargs=generate_params)
    t.start()
    outputs = []
    for text in streamer:
        outputs.append(text)
        print(text, end="", flush=True)

    return outputs

################################################################################################
#Generation
outputs = chat_processor("How do I build a car?", max_new_tokens=1000, do_sample=False)

Quantization

You can reproduce the model using the following quant configs:

from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer

model_id  = "mistralai/Mixtral-8x7B-Instruct-v0.1"
model     = HQQModelForCausalLM.from_pretrained(model_id, use_auth_token=hf_auth, cache_dir=cache_path)

#Quantize params
from hqq.core.quantize import *
attn_prams     = BaseQuantizeConfig(nbits=4, group_size=64, offload_meta=True) 
experts_params = BaseQuantizeConfig(nbits=2, group_size=16, offload_meta=True) 
zero_scale_group_size = 128

attn_prams['scale_quant_params']['group_size']     = zero_scale_group_size
attn_prams['zero_quant_params']['group_size']      = zero_scale_group_size
experts_params['scale_quant_params']['group_size'] = zero_scale_group_size
experts_params['zero_quant_params']['group_size']  = zero_scale_group_size

quant_config = {}
#Attention
quant_config['self_attn.q_proj'] = attn_prams
quant_config['self_attn.k_proj'] = attn_prams
quant_config['self_attn.v_proj'] = attn_prams
quant_config['self_attn.o_proj'] = attn_prams
#Experts
quant_config['block_sparse_moe.experts.w1'] = experts_params
quant_config['block_sparse_moe.experts.w2'] = experts_params
quant_config['block_sparse_moe.experts.w3'] = experts_params

#Quantize
model.quantize_model(quant_config=quant_config, compute_dtype=torch.float16);
model.eval();

The code in github at https://github.com/mobiusml/hqq/blob/master/examples/hf/mixtral_13GB_example.py

Downloads last month
9
Inference Examples
Inference API (serverless) has been turned off for this model.

Collection including mobiuslabsgmbh/Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bit-metaoffload-HQQ