regnet_y_8gf

A RegNetY-8GF image classification model. Pretrained in ImageNet by torchvision contributors (see ImageNet1K-V2 weight details https://github.com/pytorch/vision/issues/3995#new-recipe).

Disclaimer: This is a porting of the torch model weights to Apple MLX Framework.

How to use

pip install mlx-image

Here is how to use this model for image classification:

from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform

transform = ImageNetTransform(train=False, img_size=224)
x = transform(read_rgb("cat.png"))
x = mx.expand_dims(x, 0)

model = create_model("regnet_y_8gf")
model.eval()

logits = model(x)

You can also use the embeds from layer before head:

from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform

transform = ImageNetTransform(train=False, img_size=224)
x = transform(read_rgb("cat.png"))
x = mx.expand_dims(x, 0)

# first option
model = create_model("regnet_y_8gf", num_classes=0)
model.eval()

embeds = model(x)

# second option
model = create_model("regnet_y_8gf")
model.eval()

embeds = model.get_features(x)
Downloads last month
3
Safetensors
Model size
39.5M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support mlx-image models for this pipeline type.

Dataset used to train mlx-vision/regnet_y_8gf-mlxim