NeuralHermes 2.5 - Mistral 7B - LASER

This is an experimental LASER version of NeuralHermes using laserRMT, based on this paper.

Model AGIEval GPT4All TruthfulQA Bigbench Average
NeuralHermes-2.5-Mistral-7B-laser 43.54 73.44 55.26 42.24 53.62
NeuralHermes-2.5-Mistral-7B 43.67 73.24 55.37 41.76 53.51

Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024.

NeuralHermes is an teknium/OpenHermes-2.5-Mistral-7B model that has been further fine-tuned with Direct Preference Optimization (DPO) using the mlabonne/chatml_dpo_pairs dataset. It surpasses the original model on several benchmarks (see results).

It is directly inspired by the RLHF process described by Intel/neural-chat-7b-v3-1's authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template.

The code to train this model is available on Google Colab and GitHub. It required an A100 GPU for about an hour.

Results

AGIEval

Task Version Metric Value Stderr
agieval_aqua_rat 0 acc 21.26 ± 2.57
acc_norm 22.83 ± 2.64
agieval_logiqa_en 0 acc 39.32 ± 1.92
acc_norm 40.71 ± 1.93
agieval_lsat_ar 0 acc 25.65 ± 2.89
acc_norm 25.65 ± 2.89
agieval_lsat_lr 0 acc 48.82 ± 2.22
acc_norm 50.00 ± 2.22
agieval_lsat_rc 0 acc 58.36 ± 3.01
acc_norm 57.25 ± 3.02
agieval_sat_en 0 acc 74.27 ± 3.05
acc_norm 73.30 ± 3.09
agieval_sat_en_without_passage 0 acc 43.69 ± 3.46
acc_norm 42.23 ± 3.45
agieval_sat_math 0 acc 37.27 ± 3.27
acc_norm 36.36 ± 3.25

Average: 43.54%

GPT4All

Task Version Metric Value Stderr
arc_challenge 0 acc 57.76 ± 1.44
acc_norm 60.32 ± 1.43
arc_easy 0 acc 83.84 ± 0.76
acc_norm 81.10 ± 0.80
boolq 1 acc 86.70 ± 0.59
hellaswag 0 acc 63.15 ± 0.48
acc_norm 82.55 ± 0.38
openbookqa 0 acc 34.40 ± 2.13
acc_norm 45.20 ± 2.23
piqa 0 acc 81.94 ± 0.90
acc_norm 82.97 ± 0.88
winogrande 0 acc 75.22 ± 1.21

Average: 73.44%

TruthfulQA

Task Version Metric Value Stderr
truthfulqa_mc 1 mc1 37.70 ± 1.70
mc2 55.26 ± 1.52

Average: 55.26%

Bigbench

Task Version Metric Value Stderr
bigbench_causal_judgement 0 multiple_choice_grade 53.16 ± 3.63
bigbench_date_understanding 0 multiple_choice_grade 65.31 ± 2.48
bigbench_disambiguation_qa 0 multiple_choice_grade 34.11 ± 2.96
bigbench_geometric_shapes 0 multiple_choice_grade 27.02 ± 2.35
exact_str_match 0.28 ± 0.28
bigbench_logical_deduction_five_objects 0 multiple_choice_grade 27.80 ± 2.01
bigbench_logical_deduction_seven_objects 0 multiple_choice_grade 19.86 ± 1.51
bigbench_logical_deduction_three_objects 0 multiple_choice_grade 48.33 ± 2.89
bigbench_movie_recommendation 0 multiple_choice_grade 41.40 ± 2.20
bigbench_navigate 0 multiple_choice_grade 50.00 ± 1.58
bigbench_reasoning_about_colored_objects 0 multiple_choice_grade 65.00 ± 1.07
bigbench_ruin_names 0 multiple_choice_grade 46.21 ± 2.36
bigbench_salient_translation_error_detection 0 multiple_choice_grade 27.25 ± 1.41
bigbench_snarks 0 multiple_choice_grade 70.72 ± 3.39
bigbench_sports_understanding 0 multiple_choice_grade 65.72 ± 1.51
bigbench_temporal_sequences 0 multiple_choice_grade 30.40 ± 1.46
bigbench_tracking_shuffled_objects_five_objects 0 multiple_choice_grade 22.56 ± 1.18
bigbench_tracking_shuffled_objects_seven_objects 0 multiple_choice_grade 17.09 ± 0.90
bigbench_tracking_shuffled_objects_three_objects 0 multiple_choice_grade 48.33 ± 2.89

Average: 42.24%

Average score: 53.62%

Usage

You can run this model using LM Studio or any other frontend.

You can also run this model using the following code:

import transformers
from transformers import AutoTokenizer

# Format prompt
message = [
    {"role": "system", "content": "You are a helpful assistant chatbot."},
    {"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)

# Create pipeline
pipeline = transformers.pipeline(
    "text-generation",
    model="mlabonne/NeuralHermes-2.5-Mistral-7B-laser",
    tokenizer=tokenizer
)

# Generate text
sequences = pipeline(
    prompt,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    num_return_sequences=1,
    max_length=200,
)
print(sequences[0]['generated_text'])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 67.29
AI2 Reasoning Challenge (25-Shot) 66.38
HellaSwag (10-Shot) 85.09
MMLU (5-Shot) 63.43
TruthfulQA (0-shot) 54.95
Winogrande (5-shot) 78.14
GSM8k (5-shot) 55.72
Downloads last month
24
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mlabonne/NeuralHermes-2.5-Mistral-7B-laser

Finetuned
(72)
this model
Merges
1 model
Quantizations
4 models

Dataset used to train mlabonne/NeuralHermes-2.5-Mistral-7B-laser

Collection including mlabonne/NeuralHermes-2.5-Mistral-7B-laser

Evaluation results