NeuralBeagle14-7B / README.md
mlabonne's picture
Create README.md
68ff49c verified
|
raw
history blame
3.2 kB
metadata
license: apache-2.0
tags:
  - merge
  - mergekit
  - lazymergekit
  - fblgit/UNA-TheBeagle-7b-v1
  - argilla/distilabeled-Marcoro14-7B-slerp
  - dpo
  - rlhf

NeuralBeagle14-7B

NeuralBeagle14-7B is a DPO fine-tune of mlabonne/Beagle14-7B using argilla/distilabel-intel-orca-dpo-pairs.

Thanks Argilla for providing the dataset and the training recipe here. πŸ’ͺ

πŸ† Evaluation

The evaluation was performed using LLM AutoEval on Nous suite.

Model Average AGIEval GPT4All TruthfulQA Bigbench
Beagle14-7B **** **** **** **** 4
mlabonne/Beagle14-7B πŸ“„ 59.4 44.38 76.53 69.44 47.25
mlabonne/NeuralDaredevil-7B πŸ“„ 59.39 45.23 76.2 67.61 48.52
argilla/distilabeled-Marcoro14-7B-slerp πŸ“„ 58.93 45.38 76.48 65.68 48.18
mlabonne/NeuralMarcoro14-7B πŸ“„ 58.4 44.59 76.17 65.94 46.9
openchat/openchat-3.5-0106 πŸ“„ 53.71 44.17 73.72 52.53 44.4
teknium/OpenHermes-2.5-Mistral-7B πŸ“„ 52.42 42.75 72.99 52.99 40.94

You can find the complete benchmark on YALL - Yet Another LLM Leaderboard.

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/NeuralBeagle14-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Built with Distilabel