mlabonne's picture
Adding Evaluation Results (#1)
4295cb5 verified
metadata
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - NousResearch/Hermes-3-Llama-3.1-70B
  - mlabonne/Llama-3-70B-Instruct-abliterated-LORA
model-index:
  - name: Hermes-3-Llama-3.1-70B-lorablated
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 71.44
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Hermes-3-Llama-3.1-70B-lorablated
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 52.34
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Hermes-3-Llama-3.1-70B-lorablated
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 13.82
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Hermes-3-Llama-3.1-70B-lorablated
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 13.2
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Hermes-3-Llama-3.1-70B-lorablated
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 22.02
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Hermes-3-Llama-3.1-70B-lorablated
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 41.37
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Hermes-3-Llama-3.1-70B-lorablated
          name: Open LLM Leaderboard

🪽 Hermes-3-Llama-3.1-70B-lorablated

image/png

8B version: mlabonne/Hermes-3-Llama-3.1-8B-lorablated

This is an uncensored version of NousResearch/Hermes-3-Llama-3.1-70B using lorablation.

You can see in the following example how Hermes 3 refuses to answer a legitimate question while the abliterated model complies:

image/png

The recipe is based on @grimjim's grimjim/Llama-3.1-8B-Instruct-abliterated_via_adapter (special thanks):

  1. Extraction: We extract a LoRA adapter by comparing two models: a censored Llama 3 (meta-llama/Meta-Llama-3-70B-Instruct) and an abliterated Llama 3.1 (failspy/Meta-Llama-3.1-70B-Instruct-abliterated).
  2. Merge: We merge this new LoRA adapter using task arithmetic to the censored NousResearch/Hermes-3-Llama-3.1-70B to abliterate it.

image/png

See this article to learn more about abliteration.

⚡ Quantization

🧩 Configuration

This model was merged using the task arithmetic merge method using NousResearch/Hermes-3-Llama-3.1-70B + Llama-3.1-70B-Instruct-abliterated-LORA as a base.

The following YAML configuration was used to produce this model:

base_model: NousResearch/Hermes-3-Llama-3.1-70B+mlabonne/Llama-3.1-70B-Instruct-abliterated-LORA
dtype: bfloat16
merge_method: task_arithmetic
parameters:
  normalize: false
slices:
- sources:
  - layer_range: [0, 32]
    model: NousResearch/Hermes-3-Llama-3.1-70B+mlabonne/Llama-3.1-70B-Instruct-abliterated-LORA
    parameters:
      weight: 1.0

You can reproduce this model using the following commands:

# Setup
git clone https://github.com/arcee-ai/mergekit.git
cd mergekit && pip install -e .
pip install bitsandbytes

# Merge using previous config
mergekit-yaml config.yaml Hermes-3-Llama-3.1-70B-lorablated --allow-crimes --lora-merge-cache=./cache

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 35.70
IFEval (0-Shot) 71.44
BBH (3-Shot) 52.34
MATH Lvl 5 (4-Shot) 13.82
GPQA (0-shot) 13.20
MuSR (0-shot) 22.02
MMLU-PRO (5-shot) 41.37