metadata
language:
- en
license: other
library_name: transformers
tags:
- mergekit
- merge
- lazymergekit
base_model:
- Qwen/Qwen2.5-32B-Instruct
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: BigQwen2.5-52B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 79.29
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 59.81
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 17.82
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.94
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.45
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.22
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct
name: Open LLM Leaderboard
BigQwen2.5-52B-Instruct
BigQwen2.5-52B-Instruct is a Qwen/Qwen2-32B-Instruct self-merge made with MergeKit.
It applies the mlabonne/Meta-Llama-3-120B-Instruct recipe.
I made it due to popular demand but I haven't tested it so use it at your own risk. Β―\_(γ)_/Β―
π Applications
It might be good for creative writing tasks. I recommend a context length of 32k but you can go up to 131,072 tokens in theory.
𧩠Configuration
The following YAML configuration was used to produce this model:
slices:
- sources:
- layer_range: [0, 16]
model: Qwen/Qwen2.5-32B-Instruct
- sources:
- layer_range: [8, 24]
model: Qwen/Qwen2.5-32B-Instruct
- sources:
- layer_range: [16, 32]
model: Qwen/Qwen2.5-32B-Instruct
- sources:
- layer_range: [24, 40]
model: Qwen/Qwen2.5-32B-Instruct
- sources:
- layer_range: [32, 48]
model: Qwen/Qwen2.5-32B-Instruct
- sources:
- layer_range: [40, 56]
model: Qwen/Qwen2.5-32B-Instruct
- sources:
- layer_range: [56, 64]
model: Qwen/Qwen2.5-32B-Instruct
merge_method: passthrough
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/BigQwen2.5-52B-Instruct"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 37.42 |
IFEval (0-Shot) | 79.29 |
BBH (3-Shot) | 59.81 |
MATH Lvl 5 (4-Shot) | 17.82 |
GPQA (0-shot) | 6.94 |
MuSR (0-shot) | 10.45 |
MMLU-PRO (5-shot) | 50.22 |