finetune-newwiki-summarization-ver2

This model is a fine-tuned version of minnehwg/finetune-newwiki-summarization-ver1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4697
  • Rouge1: 48.1659
  • Rouge2: 25.1491
  • Rougel: 34.7794
  • Rougelsum: 37.0893

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 7
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.4912 1.0 990 0.4701 48.1754 25.0221 34.7613 37.0734
0.4748 2.0 1980 0.4694 48.3629 25.3649 35.0239 37.3084
0.4755 3.0 2970 0.4695 48.2770 25.1907 34.8456 37.1930
0.4703 4.0 3960 0.4696 48.1801 25.1769 34.8004 37.0817
0.468 5.0 4950 0.4697 48.1659 25.1491 34.7794 37.0893

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.