SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '2단 발레바 댄스 무용바 스트레칭 연습 레그 프레스 스포츠/레저>댄스>댄스소품'
  • '발레바 폴댄스봉 실내 가정용 학원 스튜디오 폴봉 폴-D 50 0cm 스포츠/레저>댄스>댄스소품'
  • '댄스 바 스트레칭 무용 플로어 학원 발레 연습 스포츠/레저>댄스>댄스소품'
0.0
  • '코코랑 맨디 밸리탑 밸리댄스복 라인 줌바 댄스티 밸리복 스포츠/레저>댄스>댄스복'
  • '댄스 힙스카프 라인 스팽글 밸리 랩스커트 공연복 스포츠/레저>댄스>댄스복'
  • '코코랑 코코레이스 벨리 힙스카프 성인 밸리댄스복 라인 스포츠/레저>댄스>댄스복'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl7")
# Run inference
preds = model("발레바 발레봉 무용 난간대 스트레칭 학원 무용바 스포츠/레저>댄스>댄스소품")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 9.9786 18
Label Training Sample Count
0.0 70
1.0 70

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0357 1 0.4782 -
1.7857 50 0.3827 -
3.5714 100 0.0001 -
5.3571 150 0.0 -
7.1429 200 0.0 -
8.9286 250 0.0 -
10.7143 300 0.0 -
12.5 350 0.0 -
14.2857 400 0.0 -
16.0714 450 0.0 -
17.8571 500 0.0 -
19.6429 550 0.0 -
21.4286 600 0.0 -
23.2143 650 0.0 -
25.0 700 0.0 -
26.7857 750 0.0 -
28.5714 800 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
238
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_sl7

Base model

klue/roberta-base
Finetuned
(182)
this model

Evaluation results