File size: 9,313 Bytes
a7ce140 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 벨라이프 마리포사 테카포 실리콘 테이블매트 가구/인테리어>홈데코>주방데코>식탁매트
- text: 에코벨 숨쉬는 분리형 소파 쿠션 대형 침대 독서 팔걸이 가구/인테리어>홈데코>쿠션/방석>일반쿠션
- text: 샤이닝홈 리버블 메리산타 크리스마스 쿠션 솜포함 45x45 가구/인테리어>홈데코>쿠션/방석>일반쿠션
- text: 오븐장갑 모자 13컬러 주방장갑 냄비 손잡이 가구/인테리어>홈데코>주방데코>주방장갑
- text: 옥스포드 순면 무지 솔리드 순면 의자 학생 카페 벤치 방석커버 40 45 50 60 40x40 백아이보리 가구/인테리어>홈데코>쿠션/방석>일반방석
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0 | <ul><li>'야외 베개 삼각 봄 꽃 간단한 방수 장식 소파 커버 쿠션 가구/인테리어>홈데코>쿠션/방석>쿠션/방석커버세트'</li><li>'컬러 쿠션 커버 단색 린넨 소파 자동차 장식 베개 간단한 가구/인테리어>홈데코>쿠션/방석>방석커버'</li><li>'코멧 여름 필수템 실리콘 방석 커버 세트 대형 가구/인테리어>홈데코>쿠션/방석>방석커버'</li></ul> |
| 0.0 | <ul><li>'두툼한 내열 뚝배기 땡땡이리본 주방장갑 보호장갑 주방용장갑 키친툴 가구/인테리어>홈데코>주방데코>주방장갑'</li><li>'테이블매트 방수 커피색 북유럽 식탁매트 식탁보 가구/인테리어>홈데코>주방데코>식탁매트'</li><li>'인터그레이스 앳홈 기름때방지 주방아트보드 고래의 꿈 일러스트 디자인 3M 부착형 895x580mm 가구/인테리어>홈데코>주방데코>기타주방데코'</li></ul> |
| 1.0 | <ul><li>'실외기 덮개 가림막 중 에어컨 실외기커버 가구/인테리어>홈데코>커버류>에어컨커버'</li><li>'벽걸이 에어컨커버 캐릭터 스판 덮개 에어컨 보관 가구/인테리어>홈데코>커버류>에어컨커버'</li><li>'피아노 커버 덮개 세트 스툴 의자 학원 건반 천 패브릭 가구/인테리어>홈데코>커버류>피아노커버'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fi16")
# Run inference
preds = model("벨라이프 마리포사 테카포 실리콘 테이블매트 가구/인테리어>홈데코>주방데코>식탁매트")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 9.2857 | 19 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 70 |
| 1.0 | 70 |
| 2.0 | 70 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0238 | 1 | 0.4981 | - |
| 1.1905 | 50 | 0.4801 | - |
| 2.3810 | 100 | 0.0492 | - |
| 3.5714 | 150 | 0.0 | - |
| 4.7619 | 200 | 0.0 | - |
| 5.9524 | 250 | 0.0 | - |
| 7.1429 | 300 | 0.0 | - |
| 8.3333 | 350 | 0.0 | - |
| 9.5238 | 400 | 0.0 | - |
| 10.7143 | 450 | 0.0 | - |
| 11.9048 | 500 | 0.0 | - |
| 13.0952 | 550 | 0.0 | - |
| 14.2857 | 600 | 0.0 | - |
| 15.4762 | 650 | 0.0 | - |
| 16.6667 | 700 | 0.0 | - |
| 17.8571 | 750 | 0.0 | - |
| 19.0476 | 800 | 0.0 | - |
| 20.2381 | 850 | 0.0 | - |
| 21.4286 | 900 | 0.0 | - |
| 22.6190 | 950 | 0.0 | - |
| 23.8095 | 1000 | 0.0 | - |
| 25.0 | 1050 | 0.0 | - |
| 26.1905 | 1100 | 0.0 | - |
| 27.3810 | 1150 | 0.0 | - |
| 28.5714 | 1200 | 0.0 | - |
| 29.7619 | 1250 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |