File size: 9,313 Bytes
a7ce140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 벨라이프 마리포사 테카포 실리콘 테이블매트 가구/인테리어>홈데코>주방데코>식탁매트
- text: 에코벨 숨쉬는 분리형 소파 쿠션 대형 침대 독서 팔걸이 가구/인테리어>홈데코>쿠션/방석>일반쿠션
- text: 샤이닝홈 리버블 메리산타 크리스마스 쿠션 솜포함 45x45 가구/인테리어>홈데코>쿠션/방석>일반쿠션
- text: 오븐장갑 모자 13컬러 주방장갑 냄비 손잡이 가구/인테리어>홈데코>주방데코>주방장갑
- text: 옥스포드 순면 무지 솔리드 순면 의자 학생 카페 벤치 방석커버 40 45 50 60 40x40 백아이보리 가구/인테리어>홈데코>쿠션/방석>일반방석
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 1.0
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                          |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0   | <ul><li>'야외 베개 삼각 봄 꽃 간단한 방수 장식 소파 커버 쿠션 가구/인테리어>홈데코>쿠션/방석>쿠션/방석커버세트'</li><li>'컬러 쿠션 커버 단색 린넨 소파 자동차 장식 베개 간단한 가구/인테리어>홈데코>쿠션/방석>방석커버'</li><li>'코멧 여름 필수템 실리콘 방석 커버 세트 대형 가구/인테리어>홈데코>쿠션/방석>방석커버'</li></ul>                       |
| 0.0   | <ul><li>'두툼한 내열 뚝배기 땡땡이리본 주방장갑 보호장갑 주방용장갑 키친툴 가구/인테리어>홈데코>주방데코>주방장갑'</li><li>'테이블매트 방수 커피색 북유럽 식탁매트 식탁보 가구/인테리어>홈데코>주방데코>식탁매트'</li><li>'인터그레이스 앳홈 기름때방지 주방아트보드 고래의 꿈 일러스트 디자인 3M 부착형 895x580mm 가구/인테리어>홈데코>주방데코>기타주방데코'</li></ul> |
| 1.0   | <ul><li>'실외기 덮개 가림막 중 에어컨 실외기커버 가구/인테리어>홈데코>커버류>에어컨커버'</li><li>'벽걸이 에어컨커버 캐릭터 스판 덮개 에어컨 보관 가구/인테리어>홈데코>커버류>에어컨커버'</li><li>'피아노 커버 덮개 세트 스툴 의자 학원 건반 천 패브릭 가구/인테리어>홈데코>커버류>피아노커버'</li></ul>                                        |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 1.0      |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fi16")
# Run inference
preds = model("벨라이프 마리포사 테카포 실리콘 테이블매트 가구/인테리어>홈데코>주방데코>식탁매트")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 9.2857 | 19  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 70                    |
| 1.0   | 70                    |
| 2.0   | 70                    |

### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0238  | 1    | 0.4981        | -               |
| 1.1905  | 50   | 0.4801        | -               |
| 2.3810  | 100  | 0.0492        | -               |
| 3.5714  | 150  | 0.0           | -               |
| 4.7619  | 200  | 0.0           | -               |
| 5.9524  | 250  | 0.0           | -               |
| 7.1429  | 300  | 0.0           | -               |
| 8.3333  | 350  | 0.0           | -               |
| 9.5238  | 400  | 0.0           | -               |
| 10.7143 | 450  | 0.0           | -               |
| 11.9048 | 500  | 0.0           | -               |
| 13.0952 | 550  | 0.0           | -               |
| 14.2857 | 600  | 0.0           | -               |
| 15.4762 | 650  | 0.0           | -               |
| 16.6667 | 700  | 0.0           | -               |
| 17.8571 | 750  | 0.0           | -               |
| 19.0476 | 800  | 0.0           | -               |
| 20.2381 | 850  | 0.0           | -               |
| 21.4286 | 900  | 0.0           | -               |
| 22.6190 | 950  | 0.0           | -               |
| 23.8095 | 1000 | 0.0           | -               |
| 25.0    | 1050 | 0.0           | -               |
| 26.1905 | 1100 | 0.0           | -               |
| 27.3810 | 1150 | 0.0           | -               |
| 28.5714 | 1200 | 0.0           | -               |
| 29.7619 | 1250 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->