SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2.0
  • '야외 베개 삼각 봄 꽃 간단한 방수 장식 소파 커버 쿠션 가구/인테리어>홈데코>쿠션/방석>쿠션/방석커버세트'
  • '컬러 쿠션 커버 단색 린넨 소파 자동차 장식 베개 간단한 가구/인테리어>홈데코>쿠션/방석>방석커버'
  • '코멧 여름 필수템 실리콘 방석 커버 세트 대형 가구/인테리어>홈데코>쿠션/방석>방석커버'
0.0
  • '두툼한 내열 뚝배기 땡땡이리본 주방장갑 보호장갑 주방용장갑 키친툴 가구/인테리어>홈데코>주방데코>주방장갑'
  • '테이블매트 방수 커피색 북유럽 식탁매트 식탁보 가구/인테리어>홈데코>주방데코>식탁매트'
  • '인터그레이스 앳홈 기름때방지 주방아트보드 고래의 꿈 일러스트 디자인 3M 부착형 895x580mm 가구/인테리어>홈데코>주방데코>기타주방데코'
1.0
  • '실외기 덮개 가림막 중 에어컨 실외기커버 가구/인테리어>홈데코>커버류>에어컨커버'
  • '벽걸이 에어컨커버 캐릭터 스판 덮개 에어컨 보관 가구/인테리어>홈데코>커버류>에어컨커버'
  • '피아노 커버 덮개 세트 스툴 의자 학원 건반 천 패브릭 가구/인테리어>홈데코>커버류>피아노커버'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fi16")
# Run inference
preds = model("벨라이프 마리포사 테카포 실리콘 테이블매트 가구/인테리어>홈데코>주방데코>식탁매트")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 9.2857 19
Label Training Sample Count
0.0 70
1.0 70
2.0 70

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0238 1 0.4981 -
1.1905 50 0.4801 -
2.3810 100 0.0492 -
3.5714 150 0.0 -
4.7619 200 0.0 -
5.9524 250 0.0 -
7.1429 300 0.0 -
8.3333 350 0.0 -
9.5238 400 0.0 -
10.7143 450 0.0 -
11.9048 500 0.0 -
13.0952 550 0.0 -
14.2857 600 0.0 -
15.4762 650 0.0 -
16.6667 700 0.0 -
17.8571 750 0.0 -
19.0476 800 0.0 -
20.2381 850 0.0 -
21.4286 900 0.0 -
22.6190 950 0.0 -
23.8095 1000 0.0 -
25.0 1050 0.0 -
26.1905 1100 0.0 -
27.3810 1150 0.0 -
28.5714 1200 0.0 -
29.7619 1250 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
0
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_fi16

Base model

klue/roberta-base
Finetuned
(182)
this model

Evaluation results