mini1013 commited on
Commit
d41fd9e
·
verified ·
1 Parent(s): c8bcf81

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 모던탑21 모던 클래식 800 3단 장식장 가구/인테리어>거실가구>장식장
9
+ - text: 스코나 마넌트 아쿠아텍스 패브릭 1인 리클라이너 소파 가구/인테리어>거실가구>소파>리클라이너소파
10
+ - text: 가구느낌 베스트책상 1000x400 접이식 간이 테이블 가구/인테리어>거실가구>테이블>접이식테이블
11
+ - text: 자코모 러버블 컴팩트 4인 스위브 소파 + 스툴 가구/인테리어>거실가구>소파>패브릭소파
12
+ - text: 미드센추리테이블 유리좌탁 거실소파테이블 1000 가구/인테리어>거실가구>테이블>거실테이블
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: mini1013/master_domain
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 1.0
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 4 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 1.0 | <ul><li>'에싸 라보엠Ⅲ 4인 오픈코너형 기능성 카시미라 패브릭 소파 가구/인테리어>거실가구>소파>패브릭소파'</li><li>'보루네오 플레타 3인용 천연소가죽 소파 가구/인테리어>거실가구>소파>가죽소파'</li><li>'동서가구 프라임 소나무원목 내추럴 황토 카우치 흙소파 DF638379 가구/인테리어>거실가구>소파>흙/돌소파'</li></ul> |
66
+ | 2.0 | <ul><li>'체스 유리 진열장 가구/인테리어>거실가구>장식장'</li><li>'디자인벤처스 로맨틱 1800 유리장 가구/인테리어>거실가구>장식장'</li><li>'퍼니처스마트 로랜드 유리 장식장 가구/인테리어>거실가구>장식장'</li></ul> |
67
+ | 0.0 | <ul><li>'나무뜰 켄트 서랍형 거실장 1200 티비다이 MRF013 가구/인테리어>거실가구>TV거실장'</li><li>'리바트 셀리나 1800 거실장 가구/인테리어>거실가구>TV거실장'</li><li>'슈퍼홈 리처 티비다이 낮은 거실장 2000 가구/인테리어>거실가구>TV거실장'</li></ul> |
68
+ | 3.0 | <ul><li>'테이블 거실 커피 탁자 북유럽 좌식 인테리어 티 모던 카페 라운드 가구/인테리어>거실가구>테이블>거실테이블'</li><li>'미드센추리 테라조 협탁 사이드 테이블 거실 소파 장식장 선반형 가구/인테리어>거실가구>테이블>사이드테이블'</li><li>'원목좌식테이블 방석 세트 원형 차 홈 카페 거실 가구/인테리어>거실가구>테이블>거실테이블'</li></ul> |
69
+
70
+ ## Evaluation
71
+
72
+ ### Metrics
73
+ | Label | Accuracy |
74
+ |:--------|:---------|
75
+ | **all** | 1.0 |
76
+
77
+ ## Uses
78
+
79
+ ### Direct Use for Inference
80
+
81
+ First install the SetFit library:
82
+
83
+ ```bash
84
+ pip install setfit
85
+ ```
86
+
87
+ Then you can load this model and run inference.
88
+
89
+ ```python
90
+ from setfit import SetFitModel
91
+
92
+ # Download from the 🤗 Hub
93
+ model = SetFitModel.from_pretrained("mini1013/master_cate_fi1")
94
+ # Run inference
95
+ preds = model("모던탑21 모던 클래식 800 3단 장식장 가구/인테리어>거실가구>장식장")
96
+ ```
97
+
98
+ <!--
99
+ ### Downstream Use
100
+
101
+ *List how someone could finetune this model on their own dataset.*
102
+ -->
103
+
104
+ <!--
105
+ ### Out-of-Scope Use
106
+
107
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
108
+ -->
109
+
110
+ <!--
111
+ ## Bias, Risks and Limitations
112
+
113
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
114
+ -->
115
+
116
+ <!--
117
+ ### Recommendations
118
+
119
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
120
+ -->
121
+
122
+ ## Training Details
123
+
124
+ ### Training Set Metrics
125
+ | Training set | Min | Median | Max |
126
+ |:-------------|:----|:-------|:----|
127
+ | Word count | 4 | 8.1714 | 18 |
128
+
129
+ | Label | Training Sample Count |
130
+ |:------|:----------------------|
131
+ | 0.0 | 70 |
132
+ | 1.0 | 70 |
133
+ | 2.0 | 70 |
134
+ | 3.0 | 70 |
135
+
136
+ ### Training Hyperparameters
137
+ - batch_size: (256, 256)
138
+ - num_epochs: (30, 30)
139
+ - max_steps: -1
140
+ - sampling_strategy: oversampling
141
+ - num_iterations: 50
142
+ - body_learning_rate: (2e-05, 1e-05)
143
+ - head_learning_rate: 0.01
144
+ - loss: CosineSimilarityLoss
145
+ - distance_metric: cosine_distance
146
+ - margin: 0.25
147
+ - end_to_end: False
148
+ - use_amp: False
149
+ - warmup_proportion: 0.1
150
+ - l2_weight: 0.01
151
+ - seed: 42
152
+ - eval_max_steps: -1
153
+ - load_best_model_at_end: False
154
+
155
+ ### Training Results
156
+ | Epoch | Step | Training Loss | Validation Loss |
157
+ |:-------:|:----:|:-------------:|:---------------:|
158
+ | 0.0182 | 1 | 0.4862 | - |
159
+ | 0.9091 | 50 | 0.4961 | - |
160
+ | 1.8182 | 100 | 0.4367 | - |
161
+ | 2.7273 | 150 | 0.0317 | - |
162
+ | 3.6364 | 200 | 0.0 | - |
163
+ | 4.5455 | 250 | 0.0 | - |
164
+ | 5.4545 | 300 | 0.0 | - |
165
+ | 6.3636 | 350 | 0.0 | - |
166
+ | 7.2727 | 400 | 0.0 | - |
167
+ | 8.1818 | 450 | 0.0 | - |
168
+ | 9.0909 | 500 | 0.0 | - |
169
+ | 10.0 | 550 | 0.0 | - |
170
+ | 10.9091 | 600 | 0.0 | - |
171
+ | 11.8182 | 650 | 0.0 | - |
172
+ | 12.7273 | 700 | 0.0 | - |
173
+ | 13.6364 | 750 | 0.0 | - |
174
+ | 14.5455 | 800 | 0.0 | - |
175
+ | 15.4545 | 850 | 0.0 | - |
176
+ | 16.3636 | 900 | 0.0 | - |
177
+ | 17.2727 | 950 | 0.0 | - |
178
+ | 18.1818 | 1000 | 0.0 | - |
179
+ | 19.0909 | 1050 | 0.0 | - |
180
+ | 20.0 | 1100 | 0.0 | - |
181
+ | 20.9091 | 1150 | 0.0 | - |
182
+ | 21.8182 | 1200 | 0.0 | - |
183
+ | 22.7273 | 1250 | 0.0 | - |
184
+ | 23.6364 | 1300 | 0.0 | - |
185
+ | 24.5455 | 1350 | 0.0 | - |
186
+ | 25.4545 | 1400 | 0.0 | - |
187
+ | 26.3636 | 1450 | 0.0 | - |
188
+ | 27.2727 | 1500 | 0.0 | - |
189
+ | 28.1818 | 1550 | 0.0 | - |
190
+ | 29.0909 | 1600 | 0.0 | - |
191
+ | 30.0 | 1650 | 0.0 | - |
192
+
193
+ ### Framework Versions
194
+ - Python: 3.10.12
195
+ - SetFit: 1.1.0
196
+ - Sentence Transformers: 3.3.1
197
+ - Transformers: 4.44.2
198
+ - PyTorch: 2.2.0a0+81ea7a4
199
+ - Datasets: 3.2.0
200
+ - Tokenizers: 0.19.1
201
+
202
+ ## Citation
203
+
204
+ ### BibTeX
205
+ ```bibtex
206
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
207
+ doi = {10.48550/ARXIV.2209.11055},
208
+ url = {https://arxiv.org/abs/2209.11055},
209
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
210
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
211
+ title = {Efficient Few-Shot Learning Without Prompts},
212
+ publisher = {arXiv},
213
+ year = {2022},
214
+ copyright = {Creative Commons Attribution 4.0 International}
215
+ }
216
+ ```
217
+
218
+ <!--
219
+ ## Glossary
220
+
221
+ *Clearly define terms in order to be accessible across audiences.*
222
+ -->
223
+
224
+ <!--
225
+ ## Model Card Authors
226
+
227
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
228
+ -->
229
+
230
+ <!--
231
+ ## Model Card Contact
232
+
233
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
234
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_fi",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd4616e4c9e84698c3e067a3fa41541d1e817302c51fc7dca909fc13462874da
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59046b4779d0bc4162bde19dcb65b11756f22f7e0c4e0261e7d734e47198cd5d
3
+ size 25447
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff