SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '에싸 라보엠Ⅲ 4인 오픈코너형 기능성 카시미라 패브릭 소파 가구/인테리어>거실가구>소파>패브릭소파'
  • '보루네오 플레타 3인용 천연소가죽 소파 가구/인테리어>거실가구>소파>가죽소파'
  • '동서가구 프라임 소나무원목 내추럴 황토 카우치 흙소파 DF638379 가구/인테리어>거실가구>소파>흙/돌소파'
2.0
  • '체스 유리 진열장 가구/인테리어>거실가구>장식장'
  • '디자인벤처스 로맨틱 1800 유리장 가구/인테리어>거실가구>장식장'
  • '퍼니처스마트 로랜드 유리 장식장 가구/인테리어>거실가구>장식장'
0.0
  • '나무뜰 켄트 서랍형 거실장 1200 티비다이 MRF013 가구/인테리어>거실가구>TV거실장'
  • '리바트 셀리나 1800 거실장 가구/인테리어>거실가구>TV거실장'
  • '슈퍼홈 리처 티비다이 낮은 거실장 2000 가구/인테리어>거실가구>TV거실장'
3.0
  • '테이블 거실 커피 탁자 북유럽 좌식 인테리어 티 모던 카페 라운드 가구/인테리어>거실가구>테이블>거실테이블'
  • '미드센추리 테라조 협탁 사이드 테이블 거실 소파 장식장 선반형 가구/인테리어>거실가구>테이블>사이드테이블'
  • '원목좌식테이블 방석 세트 원형 차 홈 카페 거실 가구/인테리어>거실가구>테이블>거실테이블'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fi1")
# Run inference
preds = model("모던탑21 모던 클래식 800 3단 장식장 가구/인테리어>거실가구>장식장")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 8.1714 18
Label Training Sample Count
0.0 70
1.0 70
2.0 70
3.0 70

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0182 1 0.4862 -
0.9091 50 0.4961 -
1.8182 100 0.4367 -
2.7273 150 0.0317 -
3.6364 200 0.0 -
4.5455 250 0.0 -
5.4545 300 0.0 -
6.3636 350 0.0 -
7.2727 400 0.0 -
8.1818 450 0.0 -
9.0909 500 0.0 -
10.0 550 0.0 -
10.9091 600 0.0 -
11.8182 650 0.0 -
12.7273 700 0.0 -
13.6364 750 0.0 -
14.5455 800 0.0 -
15.4545 850 0.0 -
16.3636 900 0.0 -
17.2727 950 0.0 -
18.1818 1000 0.0 -
19.0909 1050 0.0 -
20.0 1100 0.0 -
20.9091 1150 0.0 -
21.8182 1200 0.0 -
22.7273 1250 0.0 -
23.6364 1300 0.0 -
24.5455 1350 0.0 -
25.4545 1400 0.0 -
26.3636 1450 0.0 -
27.2727 1500 0.0 -
28.1818 1550 0.0 -
29.0909 1600 0.0 -
30.0 1650 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
1,123
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mini1013/master_cate_fi1

Base model

klue/roberta-base
Finetuned
(213)
this model

Evaluation results