metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Pulsar X2V2 미니 무선 게이밍 마우스 (블랙) 와이에스비투비
- text: TOSHIBA B-EX4T2 바코드프린터 산업용프린터 라벨프린터 203DPI_USB ㈜비티에스홀딩스
- text: '[당일출고]삼성전자 SL-J1680 컬러잉크젯 복합기 인쇄+복사+스캔 [정품잉크포함] 제일프린텍'
- text: 지클릭커 슈퍼히어로 SPK100 저소음 유선 무선 블루투스 레인보우 백라이트 기계식 게임용 키보드 (레트로 레드) (주)피씨베이스
- text: NIIMBOT 님봇 D110 라벨기 휴대용 라벨프린터 라벨1롤포함 빅마운트앤컴퍼니
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.8548111301103685
name: Metric
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 9 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
7 |
|
1 |
|
4 |
|
2 |
|
6 |
|
8 |
|
3 |
|
5 |
|
0 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.8548 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el18")
# Run inference
preds = model("Pulsar X2V2 미니 무선 게이밍 마우스 (블랙) 와이에스비투비")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 10.5569 | 27 |
Label | Training Sample Count |
---|---|
0 | 50 |
1 | 50 |
2 | 50 |
3 | 50 |
4 | 50 |
5 | 50 |
6 | 13 |
7 | 50 |
8 | 50 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0154 | 1 | 0.4961 | - |
0.7692 | 50 | 0.1923 | - |
1.5385 | 100 | 0.0615 | - |
2.3077 | 150 | 0.0532 | - |
3.0769 | 200 | 0.0513 | - |
3.8462 | 250 | 0.0283 | - |
4.6154 | 300 | 0.0313 | - |
5.3846 | 350 | 0.0258 | - |
6.1538 | 400 | 0.0174 | - |
6.9231 | 450 | 0.0053 | - |
7.6923 | 500 | 0.0021 | - |
8.4615 | 550 | 0.0039 | - |
9.2308 | 600 | 0.0059 | - |
10.0 | 650 | 0.0001 | - |
10.7692 | 700 | 0.0001 | - |
11.5385 | 750 | 0.0001 | - |
12.3077 | 800 | 0.0001 | - |
13.0769 | 850 | 0.0001 | - |
13.8462 | 900 | 0.0 | - |
14.6154 | 950 | 0.0001 | - |
15.3846 | 1000 | 0.0 | - |
16.1538 | 1050 | 0.0 | - |
16.9231 | 1100 | 0.0 | - |
17.6923 | 1150 | 0.0 | - |
18.4615 | 1200 | 0.0 | - |
19.2308 | 1250 | 0.0 | - |
20.0 | 1300 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}