SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 5 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
2 |
|
1 |
|
0 |
|
4 |
|
3 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.4903 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt_top8_test")
# Run inference
preds = model("엔프라니 옴므 선블록 썬크림 남성용 선크림 (#M)화장품/미용>남성화장품>선크림 Naverstore > 화장품/미용 > 남성화장품 > 선크림")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 11 | 21.656 | 72 |
Label | Training Sample Count |
---|---|
0 | 50 |
1 | 50 |
2 | 50 |
3 | 50 |
4 | 50 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0026 | 1 | 0.4513 | - |
0.1279 | 50 | 0.4435 | - |
0.2558 | 100 | 0.4063 | - |
0.3836 | 150 | 0.3413 | - |
0.5115 | 200 | 0.2997 | - |
0.6394 | 250 | 0.2434 | - |
0.7673 | 300 | 0.1724 | - |
0.8951 | 350 | 0.1334 | - |
1.0230 | 400 | 0.1078 | - |
1.1509 | 450 | 0.0997 | - |
1.2788 | 500 | 0.0937 | - |
1.4066 | 550 | 0.0933 | - |
1.5345 | 600 | 0.0909 | - |
1.6624 | 650 | 0.0897 | - |
1.7903 | 700 | 0.0842 | - |
1.9182 | 750 | 0.0741 | - |
2.0460 | 800 | 0.0764 | - |
2.1739 | 850 | 0.0745 | - |
2.3018 | 900 | 0.0733 | - |
2.4297 | 950 | 0.0748 | - |
2.5575 | 1000 | 0.0718 | - |
2.6854 | 1050 | 0.0568 | - |
2.8133 | 1100 | 0.0415 | - |
2.9412 | 1150 | 0.0256 | - |
3.0691 | 1200 | 0.0233 | - |
3.1969 | 1250 | 0.0128 | - |
3.3248 | 1300 | 0.0088 | - |
3.4527 | 1350 | 0.0066 | - |
3.5806 | 1400 | 0.0058 | - |
3.7084 | 1450 | 0.006 | - |
3.8363 | 1500 | 0.0058 | - |
3.9642 | 1550 | 0.0039 | - |
4.0921 | 1600 | 0.0043 | - |
4.2199 | 1650 | 0.0033 | - |
4.3478 | 1700 | 0.0059 | - |
4.4757 | 1750 | 0.0065 | - |
4.6036 | 1800 | 0.0061 | - |
4.7315 | 1850 | 0.0052 | - |
4.8593 | 1900 | 0.0054 | - |
4.9872 | 1950 | 0.0043 | - |
5.1151 | 2000 | 0.0064 | - |
5.2430 | 2050 | 0.0042 | - |
5.3708 | 2100 | 0.0046 | - |
5.4987 | 2150 | 0.0038 | - |
5.6266 | 2200 | 0.0031 | - |
5.7545 | 2250 | 0.0021 | - |
5.8824 | 2300 | 0.0006 | - |
6.0102 | 2350 | 0.0003 | - |
6.1381 | 2400 | 0.0001 | - |
6.2660 | 2450 | 0.0002 | - |
6.3939 | 2500 | 0.0 | - |
6.5217 | 2550 | 0.0 | - |
6.6496 | 2600 | 0.0001 | - |
6.7775 | 2650 | 0.0 | - |
6.9054 | 2700 | 0.0 | - |
7.0332 | 2750 | 0.0 | - |
7.1611 | 2800 | 0.0 | - |
7.2890 | 2850 | 0.0 | - |
7.4169 | 2900 | 0.0 | - |
7.5448 | 2950 | 0.0 | - |
7.6726 | 3000 | 0.0 | - |
7.8005 | 3050 | 0.0 | - |
7.9284 | 3100 | 0.0 | - |
8.0563 | 3150 | 0.0 | - |
8.1841 | 3200 | 0.0 | - |
8.3120 | 3250 | 0.0 | - |
8.4399 | 3300 | 0.0 | - |
8.5678 | 3350 | 0.0 | - |
8.6957 | 3400 | 0.0 | - |
8.8235 | 3450 | 0.0 | - |
8.9514 | 3500 | 0.0 | - |
9.0793 | 3550 | 0.0 | - |
9.2072 | 3600 | 0.0 | - |
9.3350 | 3650 | 0.0 | - |
9.4629 | 3700 | 0.0 | - |
9.5908 | 3750 | 0.0 | - |
9.7187 | 3800 | 0.0 | - |
9.8465 | 3850 | 0.0 | - |
9.9744 | 3900 | 0.0 | - |
10.1023 | 3950 | 0.0 | - |
10.2302 | 4000 | 0.0 | - |
10.3581 | 4050 | 0.0 | - |
10.4859 | 4100 | 0.0 | - |
10.6138 | 4150 | 0.0 | - |
10.7417 | 4200 | 0.0 | - |
10.8696 | 4250 | 0.0 | - |
10.9974 | 4300 | 0.0 | - |
11.1253 | 4350 | 0.0 | - |
11.2532 | 4400 | 0.0 | - |
11.3811 | 4450 | 0.0 | - |
11.5090 | 4500 | 0.0 | - |
11.6368 | 4550 | 0.0 | - |
11.7647 | 4600 | 0.0 | - |
11.8926 | 4650 | 0.0 | - |
12.0205 | 4700 | 0.0 | - |
12.1483 | 4750 | 0.0 | - |
12.2762 | 4800 | 0.0 | - |
12.4041 | 4850 | 0.0 | - |
12.5320 | 4900 | 0.0 | - |
12.6598 | 4950 | 0.0 | - |
12.7877 | 5000 | 0.0 | - |
12.9156 | 5050 | 0.0 | - |
13.0435 | 5100 | 0.0 | - |
13.1714 | 5150 | 0.0 | - |
13.2992 | 5200 | 0.0 | - |
13.4271 | 5250 | 0.0 | - |
13.5550 | 5300 | 0.0 | - |
13.6829 | 5350 | 0.0 | - |
13.8107 | 5400 | 0.0 | - |
13.9386 | 5450 | 0.0 | - |
14.0665 | 5500 | 0.0 | - |
14.1944 | 5550 | 0.0 | - |
14.3223 | 5600 | 0.0 | - |
14.4501 | 5650 | 0.0 | - |
14.5780 | 5700 | 0.0 | - |
14.7059 | 5750 | 0.0 | - |
14.8338 | 5800 | 0.0 | - |
14.9616 | 5850 | 0.0 | - |
15.0895 | 5900 | 0.0 | - |
15.2174 | 5950 | 0.0 | - |
15.3453 | 6000 | 0.0 | - |
15.4731 | 6050 | 0.0 | - |
15.6010 | 6100 | 0.0 | - |
15.7289 | 6150 | 0.0 | - |
15.8568 | 6200 | 0.0 | - |
15.9847 | 6250 | 0.0 | - |
16.1125 | 6300 | 0.0 | - |
16.2404 | 6350 | 0.0 | - |
16.3683 | 6400 | 0.0 | - |
16.4962 | 6450 | 0.0 | - |
16.6240 | 6500 | 0.0 | - |
16.7519 | 6550 | 0.0 | - |
16.8798 | 6600 | 0.0 | - |
17.0077 | 6650 | 0.0 | - |
17.1355 | 6700 | 0.0 | - |
17.2634 | 6750 | 0.0 | - |
17.3913 | 6800 | 0.0 | - |
17.5192 | 6850 | 0.0 | - |
17.6471 | 6900 | 0.0 | - |
17.7749 | 6950 | 0.0 | - |
17.9028 | 7000 | 0.0 | - |
18.0307 | 7050 | 0.0 | - |
18.1586 | 7100 | 0.0 | - |
18.2864 | 7150 | 0.0 | - |
18.4143 | 7200 | 0.0 | - |
18.5422 | 7250 | 0.0 | - |
18.6701 | 7300 | 0.0 | - |
18.7980 | 7350 | 0.0 | - |
18.9258 | 7400 | 0.0 | - |
19.0537 | 7450 | 0.0 | - |
19.1816 | 7500 | 0.0 | - |
19.3095 | 7550 | 0.0 | - |
19.4373 | 7600 | 0.0 | - |
19.5652 | 7650 | 0.0 | - |
19.6931 | 7700 | 0.0 | - |
19.8210 | 7750 | 0.0 | - |
19.9488 | 7800 | 0.0 | - |
20.0767 | 7850 | 0.0 | - |
20.2046 | 7900 | 0.0 | - |
20.3325 | 7950 | 0.0 | - |
20.4604 | 8000 | 0.0 | - |
20.5882 | 8050 | 0.0 | - |
20.7161 | 8100 | 0.0 | - |
20.8440 | 8150 | 0.0 | - |
20.9719 | 8200 | 0.0 | - |
21.0997 | 8250 | 0.0 | - |
21.2276 | 8300 | 0.0 | - |
21.3555 | 8350 | 0.0 | - |
21.4834 | 8400 | 0.0 | - |
21.6113 | 8450 | 0.0 | - |
21.7391 | 8500 | 0.0 | - |
21.8670 | 8550 | 0.0 | - |
21.9949 | 8600 | 0.0 | - |
22.1228 | 8650 | 0.0 | - |
22.2506 | 8700 | 0.0 | - |
22.3785 | 8750 | 0.0 | - |
22.5064 | 8800 | 0.0 | - |
22.6343 | 8850 | 0.0 | - |
22.7621 | 8900 | 0.0 | - |
22.8900 | 8950 | 0.0 | - |
23.0179 | 9000 | 0.0 | - |
23.1458 | 9050 | 0.0 | - |
23.2737 | 9100 | 0.0 | - |
23.4015 | 9150 | 0.0 | - |
23.5294 | 9200 | 0.0 | - |
23.6573 | 9250 | 0.0 | - |
23.7852 | 9300 | 0.0 | - |
23.9130 | 9350 | 0.0 | - |
24.0409 | 9400 | 0.0 | - |
24.1688 | 9450 | 0.0 | - |
24.2967 | 9500 | 0.0 | - |
24.4246 | 9550 | 0.0 | - |
24.5524 | 9600 | 0.0 | - |
24.6803 | 9650 | 0.0 | - |
24.8082 | 9700 | 0.0 | - |
24.9361 | 9750 | 0.0 | - |
25.0639 | 9800 | 0.0 | - |
25.1918 | 9850 | 0.0 | - |
25.3197 | 9900 | 0.0 | - |
25.4476 | 9950 | 0.0 | - |
25.5754 | 10000 | 0.0 | - |
25.7033 | 10050 | 0.0 | - |
25.8312 | 10100 | 0.0 | - |
25.9591 | 10150 | 0.0 | - |
26.0870 | 10200 | 0.0 | - |
26.2148 | 10250 | 0.0 | - |
26.3427 | 10300 | 0.0 | - |
26.4706 | 10350 | 0.0 | - |
26.5985 | 10400 | 0.0 | - |
26.7263 | 10450 | 0.0 | - |
26.8542 | 10500 | 0.0 | - |
26.9821 | 10550 | 0.0 | - |
27.1100 | 10600 | 0.0 | - |
27.2379 | 10650 | 0.0 | - |
27.3657 | 10700 | 0.0 | - |
27.4936 | 10750 | 0.0 | - |
27.6215 | 10800 | 0.0 | - |
27.7494 | 10850 | 0.0 | - |
27.8772 | 10900 | 0.0 | - |
28.0051 | 10950 | 0.0 | - |
28.1330 | 11000 | 0.0 | - |
28.2609 | 11050 | 0.0 | - |
28.3887 | 11100 | 0.0 | - |
28.5166 | 11150 | 0.0 | - |
28.6445 | 11200 | 0.0 | - |
28.7724 | 11250 | 0.0 | - |
28.9003 | 11300 | 0.0 | - |
29.0281 | 11350 | 0.0 | - |
29.1560 | 11400 | 0.0 | - |
29.2839 | 11450 | 0.0 | - |
29.4118 | 11500 | 0.0 | - |
29.5396 | 11550 | 0.0 | - |
29.6675 | 11600 | 0.0 | - |
29.7954 | 11650 | 0.0 | - |
29.9233 | 11700 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.