SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 15 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
8 |
|
4 |
|
13 |
|
10 |
|
14 |
|
1 |
|
3 |
|
11 |
|
12 |
|
7 |
|
9 |
|
2 |
|
5 |
|
6 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9065 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt_top4_test")
# Run inference
preds = model("러쉬 [러쉬]오늘을 사랑해(섹스 밤+피치 배쓰 밤) (#M)11st>바디케어>바디워시>가루형입욕제 11st > 뷰티 > 바디케어 > 바디워시 > 가루형입욕제")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 12 | 21.7607 | 51 |
Label | Training Sample Count |
---|---|
0 | 50 |
1 | 50 |
2 | 50 |
3 | 50 |
4 | 50 |
5 | 50 |
6 | 50 |
7 | 48 |
8 | 50 |
9 | 50 |
10 | 50 |
11 | 50 |
12 | 50 |
13 | 50 |
14 | 50 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0009 | 1 | 0.4485 | - |
0.0428 | 50 | 0.4501 | - |
0.0855 | 100 | 0.4537 | - |
0.1283 | 150 | 0.4456 | - |
0.1711 | 200 | 0.438 | - |
0.2139 | 250 | 0.4018 | - |
0.2566 | 300 | 0.3949 | - |
0.2994 | 350 | 0.3759 | - |
0.3422 | 400 | 0.3392 | - |
0.3849 | 450 | 0.3183 | - |
0.4277 | 500 | 0.2821 | - |
0.4705 | 550 | 0.2688 | - |
0.5133 | 600 | 0.2653 | - |
0.5560 | 650 | 0.2568 | - |
0.5988 | 700 | 0.2565 | - |
0.6416 | 750 | 0.2598 | - |
0.6843 | 800 | 0.2502 | - |
0.7271 | 850 | 0.2427 | - |
0.7699 | 900 | 0.2356 | - |
0.8127 | 950 | 0.2285 | - |
0.8554 | 1000 | 0.2192 | - |
0.8982 | 1050 | 0.2219 | - |
0.9410 | 1100 | 0.2181 | - |
0.9837 | 1150 | 0.2123 | - |
1.0265 | 1200 | 0.2079 | - |
1.0693 | 1250 | 0.2067 | - |
1.1121 | 1300 | 0.1987 | - |
1.1548 | 1350 | 0.1957 | - |
1.1976 | 1400 | 0.1908 | - |
1.2404 | 1450 | 0.1883 | - |
1.2831 | 1500 | 0.1824 | - |
1.3259 | 1550 | 0.1821 | - |
1.3687 | 1600 | 0.1821 | - |
1.4115 | 1650 | 0.1686 | - |
1.4542 | 1700 | 0.1693 | - |
1.4970 | 1750 | 0.1611 | - |
1.5398 | 1800 | 0.1581 | - |
1.5825 | 1850 | 0.1416 | - |
1.6253 | 1900 | 0.1412 | - |
1.6681 | 1950 | 0.1257 | - |
1.7109 | 2000 | 0.13 | - |
1.7536 | 2050 | 0.1205 | - |
1.7964 | 2100 | 0.1182 | - |
1.8392 | 2150 | 0.111 | - |
1.8820 | 2200 | 0.1141 | - |
1.9247 | 2250 | 0.1022 | - |
1.9675 | 2300 | 0.0919 | - |
2.0103 | 2350 | 0.0834 | - |
2.0530 | 2400 | 0.0776 | - |
2.0958 | 2450 | 0.0701 | - |
2.1386 | 2500 | 0.0644 | - |
2.1814 | 2550 | 0.0552 | - |
2.2241 | 2600 | 0.0486 | - |
2.2669 | 2650 | 0.0433 | - |
2.3097 | 2700 | 0.0323 | - |
2.3524 | 2750 | 0.0279 | - |
2.3952 | 2800 | 0.0268 | - |
2.4380 | 2850 | 0.0247 | - |
2.4808 | 2900 | 0.0154 | - |
2.5235 | 2950 | 0.0126 | - |
2.5663 | 3000 | 0.0097 | - |
2.6091 | 3050 | 0.0099 | - |
2.6518 | 3100 | 0.0082 | - |
2.6946 | 3150 | 0.0078 | - |
2.7374 | 3200 | 0.0058 | - |
2.7802 | 3250 | 0.0048 | - |
2.8229 | 3300 | 0.0039 | - |
2.8657 | 3350 | 0.0032 | - |
2.9085 | 3400 | 0.0024 | - |
2.9512 | 3450 | 0.0021 | - |
2.9940 | 3500 | 0.0018 | - |
3.0368 | 3550 | 0.0014 | - |
3.0796 | 3600 | 0.001 | - |
3.1223 | 3650 | 0.0006 | - |
3.1651 | 3700 | 0.0007 | - |
3.2079 | 3750 | 0.0007 | - |
3.2506 | 3800 | 0.0006 | - |
3.2934 | 3850 | 0.0009 | - |
3.3362 | 3900 | 0.001 | - |
3.3790 | 3950 | 0.001 | - |
3.4217 | 4000 | 0.0005 | - |
3.4645 | 4050 | 0.0004 | - |
3.5073 | 4100 | 0.0008 | - |
3.5500 | 4150 | 0.0004 | - |
3.5928 | 4200 | 0.0022 | - |
3.6356 | 4250 | 0.0021 | - |
3.6784 | 4300 | 0.0051 | - |
3.7211 | 4350 | 0.0037 | - |
3.7639 | 4400 | 0.0026 | - |
3.8067 | 4450 | 0.0021 | - |
3.8494 | 4500 | 0.0009 | - |
3.8922 | 4550 | 0.0004 | - |
3.9350 | 4600 | 0.0002 | - |
3.9778 | 4650 | 0.0002 | - |
4.0205 | 4700 | 0.0001 | - |
4.0633 | 4750 | 0.0001 | - |
4.1061 | 4800 | 0.0001 | - |
4.1488 | 4850 | 0.0001 | - |
4.1916 | 4900 | 0.0001 | - |
4.2344 | 4950 | 0.0001 | - |
4.2772 | 5000 | 0.0001 | - |
4.3199 | 5050 | 0.0001 | - |
4.3627 | 5100 | 0.0001 | - |
4.4055 | 5150 | 0.0001 | - |
4.4482 | 5200 | 0.0001 | - |
4.4910 | 5250 | 0.0001 | - |
4.5338 | 5300 | 0.0001 | - |
4.5766 | 5350 | 0.0001 | - |
4.6193 | 5400 | 0.0001 | - |
4.6621 | 5450 | 0.0001 | - |
4.7049 | 5500 | 0.0001 | - |
4.7476 | 5550 | 0.0001 | - |
4.7904 | 5600 | 0.0001 | - |
4.8332 | 5650 | 0.0001 | - |
4.8760 | 5700 | 0.0001 | - |
4.9187 | 5750 | 0.0001 | - |
4.9615 | 5800 | 0.0002 | - |
5.0043 | 5850 | 0.0001 | - |
5.0470 | 5900 | 0.0001 | - |
5.0898 | 5950 | 0.0001 | - |
5.1326 | 6000 | 0.0001 | - |
5.1754 | 6050 | 0.0001 | - |
5.2181 | 6100 | 0.0001 | - |
5.2609 | 6150 | 0.0 | - |
5.3037 | 6200 | 0.0 | - |
5.3464 | 6250 | 0.0001 | - |
5.3892 | 6300 | 0.0003 | - |
5.4320 | 6350 | 0.0008 | - |
5.4748 | 6400 | 0.0016 | - |
5.5175 | 6450 | 0.0069 | - |
5.5603 | 6500 | 0.0152 | - |
5.6031 | 6550 | 0.0175 | - |
5.6459 | 6600 | 0.0055 | - |
5.6886 | 6650 | 0.0041 | - |
5.7314 | 6700 | 0.0024 | - |
5.7742 | 6750 | 0.0025 | - |
5.8169 | 6800 | 0.0015 | - |
5.8597 | 6850 | 0.0016 | - |
5.9025 | 6900 | 0.0018 | - |
5.9453 | 6950 | 0.0007 | - |
5.9880 | 7000 | 0.0012 | - |
6.0308 | 7050 | 0.001 | - |
6.0736 | 7100 | 0.001 | - |
6.1163 | 7150 | 0.0003 | - |
6.1591 | 7200 | 0.0001 | - |
6.2019 | 7250 | 0.0003 | - |
6.2447 | 7300 | 0.0001 | - |
6.2874 | 7350 | 0.0001 | - |
6.3302 | 7400 | 0.0001 | - |
6.3730 | 7450 | 0.0045 | - |
6.4157 | 7500 | 0.0018 | - |
6.4585 | 7550 | 0.0005 | - |
6.5013 | 7600 | 0.0012 | - |
6.5441 | 7650 | 0.0005 | - |
6.5868 | 7700 | 0.0002 | - |
6.6296 | 7750 | 0.0003 | - |
6.6724 | 7800 | 0.0002 | - |
6.7151 | 7850 | 0.0 | - |
6.7579 | 7900 | 0.0 | - |
6.8007 | 7950 | 0.0 | - |
6.8435 | 8000 | 0.0 | - |
6.8862 | 8050 | 0.0 | - |
6.9290 | 8100 | 0.0 | - |
6.9718 | 8150 | 0.0 | - |
7.0145 | 8200 | 0.0 | - |
7.0573 | 8250 | 0.0 | - |
7.1001 | 8300 | 0.0 | - |
7.1429 | 8350 | 0.0 | - |
7.1856 | 8400 | 0.0 | - |
7.2284 | 8450 | 0.0 | - |
7.2712 | 8500 | 0.0 | - |
7.3139 | 8550 | 0.0001 | - |
7.3567 | 8600 | 0.0 | - |
7.3995 | 8650 | 0.0 | - |
7.4423 | 8700 | 0.0 | - |
7.4850 | 8750 | 0.0 | - |
7.5278 | 8800 | 0.0 | - |
7.5706 | 8850 | 0.0 | - |
7.6133 | 8900 | 0.0 | - |
7.6561 | 8950 | 0.0 | - |
7.6989 | 9000 | 0.0 | - |
7.7417 | 9050 | 0.0 | - |
7.7844 | 9100 | 0.0 | - |
7.8272 | 9150 | 0.0 | - |
7.8700 | 9200 | 0.0 | - |
7.9127 | 9250 | 0.0 | - |
7.9555 | 9300 | 0.0 | - |
7.9983 | 9350 | 0.0 | - |
8.0411 | 9400 | 0.0 | - |
8.0838 | 9450 | 0.0013 | - |
8.1266 | 9500 | 0.0024 | - |
8.1694 | 9550 | 0.0043 | - |
8.2121 | 9600 | 0.0038 | - |
8.2549 | 9650 | 0.0029 | - |
8.2977 | 9700 | 0.0003 | - |
8.3405 | 9750 | 0.0004 | - |
8.3832 | 9800 | 0.0 | - |
8.4260 | 9850 | 0.0021 | - |
8.4688 | 9900 | 0.0013 | - |
8.5115 | 9950 | 0.0012 | - |
8.5543 | 10000 | 0.0011 | - |
8.5971 | 10050 | 0.0006 | - |
8.6399 | 10100 | 0.0003 | - |
8.6826 | 10150 | 0.0 | - |
8.7254 | 10200 | 0.0 | - |
8.7682 | 10250 | 0.0 | - |
8.8109 | 10300 | 0.0 | - |
8.8537 | 10350 | 0.0 | - |
8.8965 | 10400 | 0.0 | - |
8.9393 | 10450 | 0.0 | - |
8.9820 | 10500 | 0.0 | - |
9.0248 | 10550 | 0.0 | - |
9.0676 | 10600 | 0.0 | - |
9.1104 | 10650 | 0.0 | - |
9.1531 | 10700 | 0.0 | - |
9.1959 | 10750 | 0.0 | - |
9.2387 | 10800 | 0.0 | - |
9.2814 | 10850 | 0.0 | - |
9.3242 | 10900 | 0.0 | - |
9.3670 | 10950 | 0.0 | - |
9.4098 | 11000 | 0.0 | - |
9.4525 | 11050 | 0.0 | - |
9.4953 | 11100 | 0.0 | - |
9.5381 | 11150 | 0.0 | - |
9.5808 | 11200 | 0.0 | - |
9.6236 | 11250 | 0.0 | - |
9.6664 | 11300 | 0.0 | - |
9.7092 | 11350 | 0.0 | - |
9.7519 | 11400 | 0.0 | - |
9.7947 | 11450 | 0.0 | - |
9.8375 | 11500 | 0.0 | - |
9.8802 | 11550 | 0.0 | - |
9.9230 | 11600 | 0.0 | - |
9.9658 | 11650 | 0.0 | - |
10.0086 | 11700 | 0.0 | - |
10.0513 | 11750 | 0.0001 | - |
10.0941 | 11800 | 0.0011 | - |
10.1369 | 11850 | 0.0027 | - |
10.1796 | 11900 | 0.0064 | - |
10.2224 | 11950 | 0.0015 | - |
10.2652 | 12000 | 0.0004 | - |
10.3080 | 12050 | 0.0 | - |
10.3507 | 12100 | 0.0005 | - |
10.3935 | 12150 | 0.0028 | - |
10.4363 | 12200 | 0.0012 | - |
10.4790 | 12250 | 0.002 | - |
10.5218 | 12300 | 0.0015 | - |
10.5646 | 12350 | 0.0005 | - |
10.6074 | 12400 | 0.0002 | - |
10.6501 | 12450 | 0.0001 | - |
10.6929 | 12500 | 0.0 | - |
10.7357 | 12550 | 0.0002 | - |
10.7784 | 12600 | 0.0 | - |
10.8212 | 12650 | 0.0 | - |
10.8640 | 12700 | 0.0 | - |
10.9068 | 12750 | 0.0 | - |
10.9495 | 12800 | 0.0 | - |
10.9923 | 12850 | 0.0 | - |
11.0351 | 12900 | 0.0 | - |
11.0778 | 12950 | 0.0002 | - |
11.1206 | 13000 | 0.0 | - |
11.1634 | 13050 | 0.0 | - |
11.2062 | 13100 | 0.0 | - |
11.2489 | 13150 | 0.0 | - |
11.2917 | 13200 | 0.0 | - |
11.3345 | 13250 | 0.0 | - |
11.3772 | 13300 | 0.0 | - |
11.4200 | 13350 | 0.0 | - |
11.4628 | 13400 | 0.0 | - |
11.5056 | 13450 | 0.0 | - |
11.5483 | 13500 | 0.0 | - |
11.5911 | 13550 | 0.0 | - |
11.6339 | 13600 | 0.0 | - |
11.6766 | 13650 | 0.0 | - |
11.7194 | 13700 | 0.0 | - |
11.7622 | 13750 | 0.0 | - |
11.8050 | 13800 | 0.0 | - |
11.8477 | 13850 | 0.0 | - |
11.8905 | 13900 | 0.0 | - |
11.9333 | 13950 | 0.0 | - |
11.9760 | 14000 | 0.0 | - |
12.0188 | 14050 | 0.0 | - |
12.0616 | 14100 | 0.0 | - |
12.1044 | 14150 | 0.0 | - |
12.1471 | 14200 | 0.0 | - |
12.1899 | 14250 | 0.0 | - |
12.2327 | 14300 | 0.0 | - |
12.2754 | 14350 | 0.0 | - |
12.3182 | 14400 | 0.0 | - |
12.3610 | 14450 | 0.0 | - |
12.4038 | 14500 | 0.0 | - |
12.4465 | 14550 | 0.0 | - |
12.4893 | 14600 | 0.0 | - |
12.5321 | 14650 | 0.0 | - |
12.5749 | 14700 | 0.0 | - |
12.6176 | 14750 | 0.0 | - |
12.6604 | 14800 | 0.0 | - |
12.7032 | 14850 | 0.0 | - |
12.7459 | 14900 | 0.0001 | - |
12.7887 | 14950 | 0.0006 | - |
12.8315 | 15000 | 0.0 | - |
12.8743 | 15050 | 0.0 | - |
12.9170 | 15100 | 0.0 | - |
12.9598 | 15150 | 0.0 | - |
13.0026 | 15200 | 0.0 | - |
13.0453 | 15250 | 0.0 | - |
13.0881 | 15300 | 0.0 | - |
13.1309 | 15350 | 0.0002 | - |
13.1737 | 15400 | 0.0005 | - |
13.2164 | 15450 | 0.0017 | - |
13.2592 | 15500 | 0.0015 | - |
13.3020 | 15550 | 0.0012 | - |
13.3447 | 15600 | 0.0017 | - |
13.3875 | 15650 | 0.0006 | - |
13.4303 | 15700 | 0.0002 | - |
13.4731 | 15750 | 0.0007 | - |
13.5158 | 15800 | 0.0001 | - |
13.5586 | 15850 | 0.0001 | - |
13.6014 | 15900 | 0.0001 | - |
13.6441 | 15950 | 0.0 | - |
13.6869 | 16000 | 0.0 | - |
13.7297 | 16050 | 0.0 | - |
13.7725 | 16100 | 0.0 | - |
13.8152 | 16150 | 0.0 | - |
13.8580 | 16200 | 0.0 | - |
13.9008 | 16250 | 0.0 | - |
13.9435 | 16300 | 0.0 | - |
13.9863 | 16350 | 0.0 | - |
14.0291 | 16400 | 0.0 | - |
14.0719 | 16450 | 0.0 | - |
14.1146 | 16500 | 0.0 | - |
14.1574 | 16550 | 0.0 | - |
14.2002 | 16600 | 0.0 | - |
14.2429 | 16650 | 0.0 | - |
14.2857 | 16700 | 0.0 | - |
14.3285 | 16750 | 0.0 | - |
14.3713 | 16800 | 0.0 | - |
14.4140 | 16850 | 0.0 | - |
14.4568 | 16900 | 0.0 | - |
14.4996 | 16950 | 0.0 | - |
14.5423 | 17000 | 0.0 | - |
14.5851 | 17050 | 0.0 | - |
14.6279 | 17100 | 0.0002 | - |
14.6707 | 17150 | 0.0 | - |
14.7134 | 17200 | 0.0 | - |
14.7562 | 17250 | 0.0 | - |
14.7990 | 17300 | 0.0 | - |
14.8417 | 17350 | 0.0 | - |
14.8845 | 17400 | 0.0 | - |
14.9273 | 17450 | 0.0 | - |
14.9701 | 17500 | 0.0 | - |
15.0128 | 17550 | 0.0 | - |
15.0556 | 17600 | 0.0 | - |
15.0984 | 17650 | 0.0 | - |
15.1411 | 17700 | 0.0 | - |
15.1839 | 17750 | 0.0 | - |
15.2267 | 17800 | 0.0 | - |
15.2695 | 17850 | 0.0 | - |
15.3122 | 17900 | 0.0 | - |
15.3550 | 17950 | 0.0 | - |
15.3978 | 18000 | 0.0 | - |
15.4405 | 18050 | 0.0 | - |
15.4833 | 18100 | 0.0 | - |
15.5261 | 18150 | 0.0 | - |
15.5689 | 18200 | 0.0 | - |
15.6116 | 18250 | 0.0002 | - |
15.6544 | 18300 | 0.0 | - |
15.6972 | 18350 | 0.0 | - |
15.7399 | 18400 | 0.0 | - |
15.7827 | 18450 | 0.0 | - |
15.8255 | 18500 | 0.0 | - |
15.8683 | 18550 | 0.0 | - |
15.9110 | 18600 | 0.0 | - |
15.9538 | 18650 | 0.0 | - |
15.9966 | 18700 | 0.0 | - |
16.0393 | 18750 | 0.0 | - |
16.0821 | 18800 | 0.0 | - |
16.1249 | 18850 | 0.0 | - |
16.1677 | 18900 | 0.0 | - |
16.2104 | 18950 | 0.0 | - |
16.2532 | 19000 | 0.0 | - |
16.2960 | 19050 | 0.0 | - |
16.3388 | 19100 | 0.0 | - |
16.3815 | 19150 | 0.0 | - |
16.4243 | 19200 | 0.0 | - |
16.4671 | 19250 | 0.0 | - |
16.5098 | 19300 | 0.0 | - |
16.5526 | 19350 | 0.0 | - |
16.5954 | 19400 | 0.0 | - |
16.6382 | 19450 | 0.0002 | - |
16.6809 | 19500 | 0.0 | - |
16.7237 | 19550 | 0.0 | - |
16.7665 | 19600 | 0.0 | - |
16.8092 | 19650 | 0.0 | - |
16.8520 | 19700 | 0.0 | - |
16.8948 | 19750 | 0.0 | - |
16.9376 | 19800 | 0.0 | - |
16.9803 | 19850 | 0.0 | - |
17.0231 | 19900 | 0.0 | - |
17.0659 | 19950 | 0.0 | - |
17.1086 | 20000 | 0.0 | - |
17.1514 | 20050 | 0.0 | - |
17.1942 | 20100 | 0.0 | - |
17.2370 | 20150 | 0.0 | - |
17.2797 | 20200 | 0.0 | - |
17.3225 | 20250 | 0.0 | - |
17.3653 | 20300 | 0.0 | - |
17.4080 | 20350 | 0.0 | - |
17.4508 | 20400 | 0.0 | - |
17.4936 | 20450 | 0.0 | - |
17.5364 | 20500 | 0.0 | - |
17.5791 | 20550 | 0.0 | - |
17.6219 | 20600 | 0.0 | - |
17.6647 | 20650 | 0.0 | - |
17.7074 | 20700 | 0.0 | - |
17.7502 | 20750 | 0.0 | - |
17.7930 | 20800 | 0.0 | - |
17.8358 | 20850 | 0.0 | - |
17.8785 | 20900 | 0.0 | - |
17.9213 | 20950 | 0.0 | - |
17.9641 | 21000 | 0.0 | - |
18.0068 | 21050 | 0.0 | - |
18.0496 | 21100 | 0.0 | - |
18.0924 | 21150 | 0.0 | - |
18.1352 | 21200 | 0.0 | - |
18.1779 | 21250 | 0.0 | - |
18.2207 | 21300 | 0.0 | - |
18.2635 | 21350 | 0.0 | - |
18.3062 | 21400 | 0.0 | - |
18.3490 | 21450 | 0.0 | - |
18.3918 | 21500 | 0.0 | - |
18.4346 | 21550 | 0.0 | - |
18.4773 | 21600 | 0.0 | - |
18.5201 | 21650 | 0.0 | - |
18.5629 | 21700 | 0.0 | - |
18.6056 | 21750 | 0.0 | - |
18.6484 | 21800 | 0.0 | - |
18.6912 | 21850 | 0.0 | - |
18.7340 | 21900 | 0.0 | - |
18.7767 | 21950 | 0.0 | - |
18.8195 | 22000 | 0.0 | - |
18.8623 | 22050 | 0.0 | - |
18.9050 | 22100 | 0.0002 | - |
18.9478 | 22150 | 0.0 | - |
18.9906 | 22200 | 0.0 | - |
19.0334 | 22250 | 0.0 | - |
19.0761 | 22300 | 0.0 | - |
19.1189 | 22350 | 0.0 | - |
19.1617 | 22400 | 0.0 | - |
19.2044 | 22450 | 0.0 | - |
19.2472 | 22500 | 0.0 | - |
19.2900 | 22550 | 0.0 | - |
19.3328 | 22600 | 0.0 | - |
19.3755 | 22650 | 0.0 | - |
19.4183 | 22700 | 0.0 | - |
19.4611 | 22750 | 0.0 | - |
19.5038 | 22800 | 0.0 | - |
19.5466 | 22850 | 0.0 | - |
19.5894 | 22900 | 0.0 | - |
19.6322 | 22950 | 0.0 | - |
19.6749 | 23000 | 0.0 | - |
19.7177 | 23050 | 0.0 | - |
19.7605 | 23100 | 0.0 | - |
19.8033 | 23150 | 0.0 | - |
19.8460 | 23200 | 0.0 | - |
19.8888 | 23250 | 0.0 | - |
19.9316 | 23300 | 0.0 | - |
19.9743 | 23350 | 0.0 | - |
20.0171 | 23400 | 0.0 | - |
20.0599 | 23450 | 0.0 | - |
20.1027 | 23500 | 0.0 | - |
20.1454 | 23550 | 0.0 | - |
20.1882 | 23600 | 0.0 | - |
20.2310 | 23650 | 0.0 | - |
20.2737 | 23700 | 0.0 | - |
20.3165 | 23750 | 0.0 | - |
20.3593 | 23800 | 0.0 | - |
20.4021 | 23850 | 0.0 | - |
20.4448 | 23900 | 0.0 | - |
20.4876 | 23950 | 0.0 | - |
20.5304 | 24000 | 0.0 | - |
20.5731 | 24050 | 0.0 | - |
20.6159 | 24100 | 0.0 | - |
20.6587 | 24150 | 0.0 | - |
20.7015 | 24200 | 0.0 | - |
20.7442 | 24250 | 0.0 | - |
20.7870 | 24300 | 0.0 | - |
20.8298 | 24350 | 0.0 | - |
20.8725 | 24400 | 0.0 | - |
20.9153 | 24450 | 0.0 | - |
20.9581 | 24500 | 0.0 | - |
21.0009 | 24550 | 0.0 | - |
21.0436 | 24600 | 0.0 | - |
21.0864 | 24650 | 0.0 | - |
21.1292 | 24700 | 0.0 | - |
21.1719 | 24750 | 0.0 | - |
21.2147 | 24800 | 0.0 | - |
21.2575 | 24850 | 0.0 | - |
21.3003 | 24900 | 0.0 | - |
21.3430 | 24950 | 0.0 | - |
21.3858 | 25000 | 0.0 | - |
21.4286 | 25050 | 0.0 | - |
21.4713 | 25100 | 0.0 | - |
21.5141 | 25150 | 0.0 | - |
21.5569 | 25200 | 0.0 | - |
21.5997 | 25250 | 0.0 | - |
21.6424 | 25300 | 0.0 | - |
21.6852 | 25350 | 0.0 | - |
21.7280 | 25400 | 0.0 | - |
21.7707 | 25450 | 0.0 | - |
21.8135 | 25500 | 0.0 | - |
21.8563 | 25550 | 0.0 | - |
21.8991 | 25600 | 0.0 | - |
21.9418 | 25650 | 0.0 | - |
21.9846 | 25700 | 0.0 | - |
22.0274 | 25750 | 0.0 | - |
22.0701 | 25800 | 0.0 | - |
22.1129 | 25850 | 0.0 | - |
22.1557 | 25900 | 0.0 | - |
22.1985 | 25950 | 0.0 | - |
22.2412 | 26000 | 0.0 | - |
22.2840 | 26050 | 0.0 | - |
22.3268 | 26100 | 0.0 | - |
22.3695 | 26150 | 0.0 | - |
22.4123 | 26200 | 0.0 | - |
22.4551 | 26250 | 0.0 | - |
22.4979 | 26300 | 0.0 | - |
22.5406 | 26350 | 0.0 | - |
22.5834 | 26400 | 0.0 | - |
22.6262 | 26450 | 0.0 | - |
22.6689 | 26500 | 0.0 | - |
22.7117 | 26550 | 0.0 | - |
22.7545 | 26600 | 0.0 | - |
22.7973 | 26650 | 0.0 | - |
22.8400 | 26700 | 0.0 | - |
22.8828 | 26750 | 0.0 | - |
22.9256 | 26800 | 0.0 | - |
22.9683 | 26850 | 0.0 | - |
23.0111 | 26900 | 0.0 | - |
23.0539 | 26950 | 0.0 | - |
23.0967 | 27000 | 0.0 | - |
23.1394 | 27050 | 0.0 | - |
23.1822 | 27100 | 0.0 | - |
23.2250 | 27150 | 0.0 | - |
23.2678 | 27200 | 0.0 | - |
23.3105 | 27250 | 0.0002 | - |
23.3533 | 27300 | 0.0 | - |
23.3961 | 27350 | 0.0 | - |
23.4388 | 27400 | 0.0 | - |
23.4816 | 27450 | 0.0004 | - |
23.5244 | 27500 | 0.0008 | - |
23.5672 | 27550 | 0.0001 | - |
23.6099 | 27600 | 0.0001 | - |
23.6527 | 27650 | 0.0001 | - |
23.6955 | 27700 | 0.0 | - |
23.7382 | 27750 | 0.0 | - |
23.7810 | 27800 | 0.0 | - |
23.8238 | 27850 | 0.0 | - |
23.8666 | 27900 | 0.0 | - |
23.9093 | 27950 | 0.0002 | - |
23.9521 | 28000 | 0.0 | - |
23.9949 | 28050 | 0.0001 | - |
24.0376 | 28100 | 0.0 | - |
24.0804 | 28150 | 0.0 | - |
24.1232 | 28200 | 0.0 | - |
24.1660 | 28250 | 0.0 | - |
24.2087 | 28300 | 0.0 | - |
24.2515 | 28350 | 0.0 | - |
24.2943 | 28400 | 0.0 | - |
24.3370 | 28450 | 0.0 | - |
24.3798 | 28500 | 0.0 | - |
24.4226 | 28550 | 0.0 | - |
24.4654 | 28600 | 0.0 | - |
24.5081 | 28650 | 0.0 | - |
24.5509 | 28700 | 0.0 | - |
24.5937 | 28750 | 0.0 | - |
24.6364 | 28800 | 0.0 | - |
24.6792 | 28850 | 0.0 | - |
24.7220 | 28900 | 0.0 | - |
24.7648 | 28950 | 0.0 | - |
24.8075 | 29000 | 0.0 | - |
24.8503 | 29050 | 0.0 | - |
24.8931 | 29100 | 0.0 | - |
24.9358 | 29150 | 0.0 | - |
24.9786 | 29200 | 0.0 | - |
25.0214 | 29250 | 0.0 | - |
25.0642 | 29300 | 0.0 | - |
25.1069 | 29350 | 0.0 | - |
25.1497 | 29400 | 0.0 | - |
25.1925 | 29450 | 0.0 | - |
25.2352 | 29500 | 0.0 | - |
25.2780 | 29550 | 0.0 | - |
25.3208 | 29600 | 0.0 | - |
25.3636 | 29650 | 0.0 | - |
25.4063 | 29700 | 0.0 | - |
25.4491 | 29750 | 0.0 | - |
25.4919 | 29800 | 0.0 | - |
25.5346 | 29850 | 0.0 | - |
25.5774 | 29900 | 0.0 | - |
25.6202 | 29950 | 0.0 | - |
25.6630 | 30000 | 0.0 | - |
25.7057 | 30050 | 0.0 | - |
25.7485 | 30100 | 0.0 | - |
25.7913 | 30150 | 0.0 | - |
25.8340 | 30200 | 0.0 | - |
25.8768 | 30250 | 0.0 | - |
25.9196 | 30300 | 0.0 | - |
25.9624 | 30350 | 0.0 | - |
26.0051 | 30400 | 0.0 | - |
26.0479 | 30450 | 0.0 | - |
26.0907 | 30500 | 0.0 | - |
26.1334 | 30550 | 0.0 | - |
26.1762 | 30600 | 0.0 | - |
26.2190 | 30650 | 0.0 | - |
26.2618 | 30700 | 0.0 | - |
26.3045 | 30750 | 0.0 | - |
26.3473 | 30800 | 0.0 | - |
26.3901 | 30850 | 0.0 | - |
26.4328 | 30900 | 0.0 | - |
26.4756 | 30950 | 0.0 | - |
26.5184 | 31000 | 0.0 | - |
26.5612 | 31050 | 0.0 | - |
26.6039 | 31100 | 0.0 | - |
26.6467 | 31150 | 0.0 | - |
26.6895 | 31200 | 0.0 | - |
26.7322 | 31250 | 0.0 | - |
26.7750 | 31300 | 0.0 | - |
26.8178 | 31350 | 0.0 | - |
26.8606 | 31400 | 0.0 | - |
26.9033 | 31450 | 0.0 | - |
26.9461 | 31500 | 0.0 | - |
26.9889 | 31550 | 0.0 | - |
27.0317 | 31600 | 0.0 | - |
27.0744 | 31650 | 0.0 | - |
27.1172 | 31700 | 0.0 | - |
27.1600 | 31750 | 0.0 | - |
27.2027 | 31800 | 0.0 | - |
27.2455 | 31850 | 0.0 | - |
27.2883 | 31900 | 0.0 | - |
27.3311 | 31950 | 0.0 | - |
27.3738 | 32000 | 0.0 | - |
27.4166 | 32050 | 0.0 | - |
27.4594 | 32100 | 0.0 | - |
27.5021 | 32150 | 0.0 | - |
27.5449 | 32200 | 0.0 | - |
27.5877 | 32250 | 0.0 | - |
27.6305 | 32300 | 0.0 | - |
27.6732 | 32350 | 0.0 | - |
27.7160 | 32400 | 0.0002 | - |
27.7588 | 32450 | 0.0 | - |
27.8015 | 32500 | 0.0 | - |
27.8443 | 32550 | 0.0 | - |
27.8871 | 32600 | 0.0 | - |
27.9299 | 32650 | 0.0 | - |
27.9726 | 32700 | 0.0 | - |
28.0154 | 32750 | 0.0 | - |
28.0582 | 32800 | 0.0 | - |
28.1009 | 32850 | 0.0 | - |
28.1437 | 32900 | 0.0 | - |
28.1865 | 32950 | 0.0 | - |
28.2293 | 33000 | 0.0 | - |
28.2720 | 33050 | 0.0 | - |
28.3148 | 33100 | 0.0 | - |
28.3576 | 33150 | 0.0 | - |
28.4003 | 33200 | 0.0 | - |
28.4431 | 33250 | 0.0 | - |
28.4859 | 33300 | 0.0 | - |
28.5287 | 33350 | 0.0 | - |
28.5714 | 33400 | 0.0 | - |
28.6142 | 33450 | 0.0 | - |
28.6570 | 33500 | 0.0 | - |
28.6997 | 33550 | 0.0 | - |
28.7425 | 33600 | 0.0 | - |
28.7853 | 33650 | 0.0 | - |
28.8281 | 33700 | 0.0 | - |
28.8708 | 33750 | 0.0 | - |
28.9136 | 33800 | 0.0 | - |
28.9564 | 33850 | 0.0002 | - |
28.9991 | 33900 | 0.0 | - |
29.0419 | 33950 | 0.0 | - |
29.0847 | 34000 | 0.0 | - |
29.1275 | 34050 | 0.0 | - |
29.1702 | 34100 | 0.0 | - |
29.2130 | 34150 | 0.0 | - |
29.2558 | 34200 | 0.0 | - |
29.2985 | 34250 | 0.0 | - |
29.3413 | 34300 | 0.0 | - |
29.3841 | 34350 | 0.0 | - |
29.4269 | 34400 | 0.0 | - |
29.4696 | 34450 | 0.0 | - |
29.5124 | 34500 | 0.0 | - |
29.5552 | 34550 | 0.0 | - |
29.5979 | 34600 | 0.0 | - |
29.6407 | 34650 | 0.0 | - |
29.6835 | 34700 | 0.0 | - |
29.7263 | 34750 | 0.0 | - |
29.7690 | 34800 | 0.0 | - |
29.8118 | 34850 | 0.0 | - |
29.8546 | 34900 | 0.0 | - |
29.8973 | 34950 | 0.0 | - |
29.9401 | 35000 | 0.0 | - |
29.9829 | 35050 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.