|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 땀흡수 스포츠 운동 면 머리 헤어밴드 여자아이 고등학생 여성 검정 드렉온미 |
|
- text: 니켄 접이형 다리털제거기 1p 숱제거기 다리털면도 옵션없음 제이에이치코리아 |
|
- text: 관리 눈썹면도기 면도 미용 니켄 일자형 눈썹칼 옵션없음 프렌드리빙 |
|
- text: 천사의 웨딩드레스는 빠르게 승인받을 수 있는 로즈 레드 신부 웨 10001N548703 중_로즈 레드 선배 |
|
- text: 립브러쉬 실리콘 립스머지 휴대용 투명 미리 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.6375838926174496 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 8 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 2.0 | <ul><li>'이니스프리 샤워 볼 1ea 이니스프리'</li><li>'3컬러 양면 귀이개 택1 TW51DC3F0 블랙 블루 블루 트리플도매'</li><li>'프리미엄 실리콘 니플 가리개 여성 니플 패치 원형 알스상회'</li></ul> | |
|
| 0.0 | <ul><li>'카페인 커피 샴푸바만들기 교육용 수제비누 키트 DIY 자원순환 업사이클링 옵션없음 처음(CHOEUM)'</li><li>'플로럴워터 - 로즈마리워터 1 리터 옵션없음 주식회사 월터엔터프라이즈'</li><li>'봄봄솝 바다 비누 만들기 DIY 조개 집콕 미술 (6개 완성, 조개몰드포함) 옵션없음 봄상회'</li></ul> | |
|
| 6.0 | <ul><li>'고양이귀 세안 헤어밴드 5p세트 KD-8679 목욕용 세면 샤워용 극세사 옵션없음 초이스리테일 5'</li><li>'긴머리 샤워캡 PEVA 방수 도트 헤어캡 핑크도트 허승호'</li><li>'편리한 찍찍이타입 머리밴드 스카이 옵션없음 와이엠테크(YM tech)'</li></ul> | |
|
| 5.0 | <ul><li>'에이브 면분첩 - 중형 옵션없음 하민하이'</li><li>'마스크 2 TYPE NEW갸름마스크턱볼살용 얼굴 턱볼살 옵션없음 유남상사'</li><li>'보정웨어 TYPE 턱볼살땡 몸매관리 2 마스크 얼굴 옵션없음 최상용'</li></ul> | |
|
| 7.0 | <ul><li>'가루 파우더 케이스 30g 노세범 땀띠 파우더 소분 공병 (스푼 ) 30g 선데이베리베스트'</li><li>'면봉보관함 화장솜 케이스 디스펜서 통 옵션없음 홍스지니몰'</li><li>'실리콘공병 보틀 고리형 4종세트 추가금X 그루비스윔 수영장 여행 헬스장 캠핑용 소분용기 옵션없음 스퀘어오브에이치'</li></ul> | |
|
| 3.0 | <ul><li>'눈썹 족집게 오렌지 C 1p 청결용품 눈관리 핀셋 옵션없음 비즈파크'</li><li>'텐웨이브 쌍꺼풀테이프 레이스 티안나는 누드쌍테 단면쌍테 쌍커풀테이프 옵션없음 텐웨이브'</li><li>'1+1+1 할인 일자형 눈썹정리 눈썹칼 3P 옵션없음 버닝365마켓'</li></ul> | |
|
| 4.0 | <ul><li>'이레즈미 타투스티커 초대형 (여성용) 긴팔 옵션없음 알렉산더(ALEXANDER)'</li><li>'미니 타투 스티커 헤나 도안 형광 야광 HC-016 컬러타투 CC시리즈_CC-028 블루밍마켓'</li><li>'2주지속 리얼 문신 팔손가락 타투스티커 티안나는 반영구 방수 헤나 문신 나비 세트 A6 ( 2장세트 ) 에테르넬'</li></ul> | |
|
| 1.0 | <ul><li>'립펜슬 실버 고급립솔 화장브러쉬 옵션없음 엔에이티글로벌'</li><li>'아이라인붓 애교살브러쉬 눈썹브러쉬 1100-5 아이라인브러시 옵션없음 동묘야시장'</li><li>'아이브로우브러쉬 8pcs Cardcaptor 세트 파운데이션 섀도우 브로우 Pincel 8pcs_CHINA 드림비정선'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.6376 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_bt5_test") |
|
# Run inference |
|
preds = model("립브러쉬 실리콘 립스머지 휴대용 투명 미리") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 3 | 10.0538 | 20 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 12 | |
|
| 1.0 | 12 | |
|
| 2.0 | 12 | |
|
| 3.0 | 19 | |
|
| 4.0 | 20 | |
|
| 5.0 | 27 | |
|
| 6.0 | 13 | |
|
| 7.0 | 15 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (50, 50) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 60 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0625 | 1 | 0.4921 | - | |
|
| 3.125 | 50 | 0.2813 | - | |
|
| 6.25 | 100 | 0.0272 | - | |
|
| 9.375 | 150 | 0.0167 | - | |
|
| 12.5 | 200 | 0.002 | - | |
|
| 15.625 | 250 | 0.0001 | - | |
|
| 18.75 | 300 | 0.0001 | - | |
|
| 21.875 | 350 | 0.0001 | - | |
|
| 25.0 | 400 | 0.0001 | - | |
|
| 28.125 | 450 | 0.0001 | - | |
|
| 31.25 | 500 | 0.0001 | - | |
|
| 34.375 | 550 | 0.0001 | - | |
|
| 37.5 | 600 | 0.0001 | - | |
|
| 40.625 | 650 | 0.0001 | - | |
|
| 43.75 | 700 | 0.0001 | - | |
|
| 46.875 | 750 | 0.0001 | - | |
|
| 50.0 | 800 | 0.0001 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.2.0a0+81ea7a4 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |