SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0.0
  • 'MANIC PANIC 매닉 패닉 Bad Boy Blue 배드 보이 블루 옵션없음 제이(J) 커머스'
  • '미쟝센 올뉴 쉽고빠른 거품 염색약 5N 갈색 1개 옵션없음 트레이딩제이'
  • '376252 씨드비 물염색 시즌2 씨비드 4회분 미디엄브라운 NEW 비건 미디엄 브라운 1박스_◈232431989◈ 제이제이홀딩스'
3.0
  • '로레알 테크니아트 픽스 디자인 스프레이 200ml 옵션없음 파스텔뷰티'
  • '과일나라 컨퓸 슈퍼하드 워터스프레이 252ml 옵션없음 다인유통'
  • '폴미첼 프리즈 앤 슈퍼 샤인 스프레이 250ml 옵션없음 다사다 유한책임회사'
4.0
  • '미쟝센 파워스윙 슈퍼하드 크림 왁스 9 미디움 리젠트업 80g 옵션없음 와라즈'
  • 'Loma Hair Care 3525927124 LOMA 포밍 페이스트 85g(3온스) 옵션없음 넥스유로(NEXEURO)'
  • '차홍 왁스 쉬폰 소프트 80ml 부드러운 크림제형 옵션없음 박예찬'
1.0
  • '모레모 케라틴 셀프 다운 펌 6개 100g 옵션없음 건강드림'
  • '다주자 울트라 다운펌150ml 남자다운펌 여성매직펌 잔머리펌 다운펌set 옵션없음 포비티엘'
  • '미용실 다운펌약 집에서 옆머리 누르기 올리브영 악성곱슬 남자 셀프 다운펌 옵션없음 새벽 마트'
5.0
  • '꽃을든남자 초강력헤어젤 500ml 옵션없음 태은코리아'
  • 'lg생활건강 아르드포 헤어젤 펌프형 300ml 옵션없음 맥센 트레이드'
  • 'Ecoco 에코 스타일러 크리스탈 스타일링 젤 453g (3팩) 옵션없음 세렌몰1'
2.0
  • '밀본 니제르 클러치피즈 하이 클러치피즈 200g 헤어무스 헤어팟'
  • '갸스비 수퍼하드 스타일링폼 무스 185ml 홈쇼핑 동일상품 수퍼하드 스타일링폼 무스 185ml 제이에스유통'
  • '꽃을든남자 스타일링 헤어 무스 300ml 퀸뷰티'

Evaluation

Metrics

Label Accuracy
all 0.7192

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt11_test")
# Run inference
preds = model("헤어젤슈퍼하드400ml 과일나라 컨퓸 MWB794D8 옵션없음 하니스토어04")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 5 9.4957 26
Label Training Sample Count
0.0 25
1.0 19
2.0 15
3.0 25
4.0 19
5.0 14

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (50, 50)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 60
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0714 1 0.4886 -
3.5714 50 0.3088 -
7.1429 100 0.049 -
10.7143 150 0.0043 -
14.2857 200 0.0001 -
17.8571 250 0.0001 -
21.4286 300 0.0001 -
25.0 350 0.0001 -
28.5714 400 0.0001 -
32.1429 450 0.0001 -
35.7143 500 0.0001 -
39.2857 550 0.0001 -
42.8571 600 0.0001 -
46.4286 650 0.0001 -
50.0 700 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
1
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mini1013/master_cate_bt11_test

Base model

klue/roberta-base
Finetuned
(213)
this model

Evaluation results