metadata
library_name: transformers
tags: []
Model Card for Model ID
ProtST for binary localization
Running script
from transformers import AutoModel, AutoTokenizer, HfArgumentParser, TrainingArguments, Trainer
from transformers.data.data_collator import DataCollatorForLanguageModeling, DataCollatorForTokenClassification, DataCollatorWithPadding
from transformers.trainer_pt_utils import get_parameter_names
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from datasets import load_dataset
import functools
import numpy as np
from sklearn.metrics import accuracy_score, matthews_corrcoef
import sys
import torch
import logging
import datasets
import transformers
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def create_optimizer(opt_model, lr_ratio=0.1):
head_names = []
for n, p in opt_model.named_parameters():
if "classifier" in n:
head_names.append(n)
else:
p.requires_grad = False
# turn a list of tuple to 2 lists
for n, p in opt_model.named_parameters():
if n in head_names:
assert p.requires_grad
backbone_names = []
for n, p in opt_model.named_parameters():
if n not in head_names and p.requires_grad:
backbone_names.append(n)
# for weight_decay policy, see
# https://github.com/huggingface/transformers/blob/50573c648ae953dcc1b94d663651f07fb02268f4/src/transformers/trainer.py#L947
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS) # forbidden layer norm
decay_parameters = [name for name in decay_parameters if "bias" not in name]
# training_args.learning_rate
head_decay_parameters = [name for name in head_names if name in decay_parameters]
head_not_decay_parameters = [name for name in head_names if name not in decay_parameters]
# training_args.learning_rate * model_config.lr_ratio
backbone_decay_parameters = [name for name in backbone_names if name in decay_parameters]
backbone_not_decay_parameters = [name for name in backbone_names if name not in decay_parameters]
optimizer_grouped_parameters = [
{
"params": [p for n, p in opt_model.named_parameters() if (n in head_decay_parameters and p.requires_grad)],
"weight_decay": training_args.weight_decay,
"lr": training_args.learning_rate
},
{
"params": [p for n, p in opt_model.named_parameters() if (n in backbone_decay_parameters and p.requires_grad)],
"weight_decay": training_args.weight_decay,
"lr": training_args.learning_rate * lr_ratio
},
{
"params": [p for n, p in opt_model.named_parameters() if (n in head_not_decay_parameters and p.requires_grad)],
"weight_decay": 0.0,
"lr": training_args.learning_rate
},
{
"params": [p for n, p in opt_model.named_parameters() if (n in backbone_not_decay_parameters and p.requires_grad)],
"weight_decay": 0.0,
"lr": training_args.learning_rate * lr_ratio
},
]
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
return optimizer
def create_scheduler(training_args, optimizer):
from transformers.optimization import get_scheduler
return get_scheduler(
training_args.lr_scheduler_type,
optimizer=optimizer if optimizer is None else optimizer,
num_warmup_steps=training_args.get_warmup_steps(training_args.max_steps),
num_training_steps=training_args.max_steps,
)
def compute_metrics(eval_preds):
probs, labels = eval_preds
preds = np.argmax(probs, axis=-1)
result = {"acc": accuracy_score(labels, preds), "mcc": matthews_corrcoef(labels, preds)}
return result
def preprocess_logits_for_metrics(logits, labels):
return torch.softmax(logits, dim=-1)
if __name__ == "__main__":
device = torch.device("cpu")
raw_dataset = load_dataset("Jiqing/ProtST-BinaryLocalization")
model = AutoModel.from_pretrained("Jiqing/protst-esm1b-for-sequential-classification", trust_remote_code=True, torch_dtype=torch.bfloat16).to(device)
tokenizer = AutoTokenizer.from_pretrained("facebook/esm1b_t33_650M_UR50S")
output_dir = "/home/jiqingfe/protst/protst_2/ProtST-HuggingFace/output_dir/ProtSTModel/default/ESM-1b_PubMedBERT-abs/240123_015856"
training_args = {'output_dir': output_dir, 'overwrite_output_dir': True, 'do_train': True, 'per_device_train_batch_size': 32, 'gradient_accumulation_steps': 1, \
'learning_rate': 5e-05, 'weight_decay': 0, 'num_train_epochs': 100, 'max_steps': -1, 'lr_scheduler_type': 'constant', 'do_eval': True, \
'evaluation_strategy': 'epoch', 'per_device_eval_batch_size': 32, 'logging_strategy': 'epoch', 'save_strategy': 'epoch', 'save_steps': 820, \
'dataloader_num_workers': 0, 'run_name': 'downstream_esm1b_localization_fix', 'optim': 'adamw_torch', 'resume_from_checkpoint': False, \
'label_names': ['labels'], 'load_best_model_at_end': True, 'metric_for_best_model': 'accuracy'}
training_args = HfArgumentParser(TrainingArguments).parse_dict(training_args, allow_extra_keys=False)[0]
def tokenize_protein(example, tokenizer=None):
protein_seq = example["prot_seq"]
protein_seq_str = tokenizer(protein_seq, add_special_tokens=True)
example["input_ids"] = protein_seq_str["input_ids"]
example["attention_mask"] = protein_seq_str["attention_mask"]
example["labels"] = example["localization"]
return example
func_tokenize_protein = functools.partial(tokenize_protein, tokenizer=tokenizer)
for split in ["train", "validation", "test"]:
raw_dataset[split] = raw_dataset[split].map(func_tokenize_protein, batched=False, remove_columns=["Unnamed: 0", "prot_seq", "localization"])
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.0)
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
optimizer = create_optimizer(model)
scheduler = create_scheduler(training_args, optimizer)
# build trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=raw_dataset["train"],
eval_dataset=raw_dataset["validation"],
data_collator=data_collator,
optimizers=(optimizer, scheduler),
compute_metrics=compute_metrics,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
train_result = trainer.train()
trainer.save_model()
# Saves the tokenizer too for easy upload
tokenizer.save_pretrained(training_args.output_dir)
metrics = train_result.metrics
metrics["train_samples"] = len(raw_dataset["train"])
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
metric = trainer.evaluate(raw_dataset["test"], metric_key_prefix="test")
print("test metric: ", metric)
metric = trainer.evaluate(raw_dataset["validation"], metric_key_prefix="valid")
print("valid metric: ", metric)